將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線上,AB切半圓O于點(diǎn)F,且BC=OD.
(1)求證:DB∥CF;
(2)當(dāng)OD=2時(shí),若以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,求OB.

【答案】分析:(1)連接OF.判斷OBCF是平行四邊形;
(2)首先分析相似三角形的對(duì)應(yīng)頂點(diǎn),從而得到角對(duì)應(yīng)相等,再運(yùn)用解直角三角形的知識(shí)求解.
解答:(1)證明:連接OF,如圖.
∵AB切半圓O于F,
∴OF⊥AB.
∵CB⊥AB,∴BC∥OF.
∵BC=OD,OD=OF,
∴BC=OF.
∴四邊形OBCF是平行四邊形,
∴DB∥CF.

(2)解:以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,∠OFB=∠ABC=90°.
∵∠OBF=∠BFC,∠BFC>∠A,
∴∠OBF>∠A,
∵△OFB與△ABC相似,
∴∠A與∠BOF是對(duì)應(yīng)角.
∴∠BOF=30°.
∴OB==;
故OB的長(zhǎng)為
點(diǎn)評(píng):此題綜合運(yùn)用了平行四邊形的性質(zhì)和判定.能夠正確分析相似三角形的對(duì)應(yīng)頂點(diǎn),從而得到有關(guān)的角對(duì)應(yīng)相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線上,AB切半圓O于點(diǎn)F,且BC=OD.
(1)求證:DB∥CF;
(2)當(dāng)OD=2時(shí),若以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,求OB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)量角器和一個(gè)含30°角的直角三角板如圖1放置,圖2是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線上,AB切半圓O于點(diǎn)F,BC=OD
(1)求證:FC∥DB;
(2)當(dāng)OD=3,sin∠ABD=
35
時(shí),求AF的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖1放置,圖2是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線上,AB切半圓O于點(diǎn)F,且BC=OD.求證:DB∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線上,AB切半圓O于點(diǎn)F,且BC=OD.
(1)求證:DB∥CF;
(2)當(dāng)OD=2時(shí),若以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,求弧
EF
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:廣東省模擬題 題型:解答題

將一個(gè)量角器和一個(gè)含30度角的直角三角板如圖(1)放置,圖(2)是由他抽象出的幾何圖形,其中點(diǎn)B在半圓O的直徑DE的延長(zhǎng)線上,AB切半圓O于點(diǎn)F,且BC=OD。
(1)求證:DB∥CF。
(2)當(dāng)OD=2時(shí),若以O(shè)、B、F為頂點(diǎn)的三角形與△ABC相似,求弧的長(zhǎng)度。

查看答案和解析>>

同步練習(xí)冊(cè)答案