【題目】如圖,在平面直角坐標(biāo)系中,是坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo),點是直線上位于第二象限內(nèi)的一個動點,過點作軸于點,記點關(guān)于軸的對稱點為點.
(1)求直線的解析式;
(2)若,求點的坐標(biāo).
【答案】(1);(2)
【解析】
(1)設(shè)直線AB解析式為,把A和B的坐標(biāo)代入求出k和b的值,即可求出解析式;
(2)由以及OA的長,確定出Q橫坐標(biāo),根據(jù)P與Q關(guān)于y軸對稱,得到P點橫坐標(biāo),代入直線AB解析式求出縱坐標(biāo),即可確定出P坐標(biāo).
解:(1)設(shè)直線的解析式為,
∵直線過點,兩點,
∴解得:
∴直線的解析式為.
(2)如解圖所示,連接、,過點作軸于點,
∵當(dāng)時,為等腰三角形,而軸于點,
∴,
∵,∴
∴,
∴,
∵點關(guān)于軸的對稱點為點,
∴,
∵點是直線上位于第二象限內(nèi)的一個點,
∴,
∴點的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測速,所有車輛限速40千米/小時數(shù)學(xué)實踐活動小組設(shè)計了如下活動:在l上確定A,B兩點,并在AB路段進行區(qū)間測速.在l外取一點P,作PC⊥l,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學(xué)的數(shù)學(xué)知識說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在相同的情況下各打靶6次,每次打靶的成績?nèi)缦拢海▎挝唬涵h(huán))
請你運用所學(xué)的統(tǒng)計知識做出分析,從三個不同角度評價甲、乙兩人的打靶成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖1和圖2補充完整;
(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對語文、數(shù)學(xué)、英語、物理四科的喜愛程度(每人只選一科),特對八年級某班進行了調(diào)查,并繪制成如下頻數(shù)和頻率統(tǒng)計表和扇形統(tǒng)計圖:
科目 | 頻數(shù) | 頻率 |
語文 | 0.5 | |
數(shù)學(xué) | 12 | |
英語 | 6 | |
物理 | 0.2 |
(1)求出這次調(diào)查的總?cè)藬?shù);
(2)求出表中的值;
(3)若該校八年級有學(xué)生1000人,請你算出喜愛英語的人數(shù),并發(fā)表你的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點為原點,為等邊三角形,,分別為, 邊上的動點,點,點同時從點出發(fā),若以個單位每秒的速度從點向點運動,點以2個單位每秒的速度從點向點運動,設(shè)運動時間為.
(1)如圖1,已知點的坐標(biāo)為,且滿足,求點坐標(biāo):
(2)如圖1.連接,交于點,請問當(dāng)為何值時,;
(3)如圖2,為邊上的中點,,在運動過程中,,,三點是否能構(gòu)成使的等腰三角形,若能,試求:①運動時間;②此時四邊形的面積:若不能.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜每千克售價(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點在同一條線段上,圖2中的點在同一條拋物線上,且拋物線的最低點的坐標(biāo)為(6,1).
(1)求出與之間滿足的函數(shù)表達式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數(shù)表達式;
(3)設(shè)這種蔬菜每千克收益為元,試問在哪個月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價-成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com