【題目】如圖,已知ABC的周長是21OB,OC分別平分ABCACB,ODBCD,且OD=3,ABC的面積是

【答案】31.5

【解析】

試題分析:連接OA,作OEAC,OFAB,垂足分別為E、F,將ABC的面積分為:SABC=SOBC+SOAC+SOAB,而三個(gè)小三角形的高OD=OE=OF,它們的底邊和就是ABC的周長,可計(jì)算ABC的面積.

解:作OEAC,OFAB,垂足分別為E、F,連接OA,

OB,OC分別平分ABCACB,ODBC,

OD=OE=OF

SABC=SOBC+SOAC+SOAB

=×OD×BC+×OE×AC+×OF×AB

=×OD×BC+AC+AB

=×3×21=31.5

故填31.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃開設(shè)4門選修課:音樂、繪畫、體育、舞蹈,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門),對調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了如下不完整的兩個(gè)統(tǒng)計(jì)圖.

根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問題:

(1)此次調(diào)查抽取的學(xué)生人數(shù)為a= 人,其中選擇“繪畫”的學(xué)生人數(shù)占抽樣人數(shù)的百分比為b= ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校有2000名學(xué)生,請估計(jì)全校選擇“繪畫”的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)實(shí)驗(yàn)課上,李靜同學(xué)剪了兩張直角三角形紙片,進(jìn)行如下的操作:

操作一:如圖1,將RtABC紙片沿某條直線折疊,使斜邊兩個(gè)端點(diǎn)AB重合,折痕為DE

(1)如果AC=5cm,BC=7cm,可得ACD的周長為 ;

(2)如果∠CADBAD=1:2,可得∠B的度數(shù)為 ;

操作二:如圖2,李靜拿出另一張RtABC紙片,將直角邊AC沿直線CD折疊,使點(diǎn)A與點(diǎn)E重合,若AB=10cm,BC=8cm,請求出BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=(k為常數(shù),k≠1).

(1)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;

(2)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;

(3)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1、x2)、B(x2、y2),當(dāng)y1>y2時(shí),試比較x1與x2的大;

(4)若在其圖象上任取一點(diǎn),向x軸和y軸作垂線,若所得矩形面積為6,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)A、B兩種產(chǎn)品,其單價(jià)隨市場變化而做相應(yīng)調(diào)整,營銷人員根據(jù)前三次單價(jià)變化的情況,繪制了如下統(tǒng)計(jì)表及不完整的折線圖:

第一次

第二次

第三次

A產(chǎn)品單價(jià)(元/件)

6

5.2

6.5

B產(chǎn)品單價(jià)(元/件)

3.5

4

3

并求得了A產(chǎn)品三次單價(jià)的平均數(shù)和方差:

;SA2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=

(1)補(bǔ)全“A、B產(chǎn)品單價(jià)變化的折線圖”,B產(chǎn)品第三次的單價(jià)比上一次的單價(jià)降低了百分之多少?

(2)求B產(chǎn)品三次單價(jià)的方差,并比較哪種產(chǎn)品的單價(jià)波動(dòng)小;

(3)該廠決定第四次調(diào)價(jià),A產(chǎn)品的單價(jià)仍為6.5元/件.

則A產(chǎn)品這四次單價(jià)的中位數(shù)是 元/件.

若A產(chǎn)品這四次單價(jià)的中位數(shù)是B產(chǎn)品四次單價(jià)中位數(shù)的2倍少1,則B產(chǎn)品的第四次單價(jià)為 元/件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:

①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.

其中所有正確結(jié)論的序號是( )

A.③④ B.②③ C.①④ D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=和y=的圖象分別是l1和l2,設(shè)點(diǎn)P在l1上,PCx軸,垂足為C,交l2于點(diǎn)A,PDy軸,垂足為D,交l2于點(diǎn)B,則三角形PAB的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是假命題的有(  )

鄰補(bǔ)角相等;對頂角相等;同位角相等;內(nèi)錯(cuò)角相等.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=9,AD=6,ADC的平分線交AB于點(diǎn)E,交CB的延長線于點(diǎn)F,AGDE,垂足為G.若AG=4,則BEF的面積是( )

A. B.2 C.3 D.4

查看答案和解析>>

同步練習(xí)冊答案