【題目】如圖,已知RtABC中,∠C=90°,AC=8cm,AB=12cm,點(diǎn)PB出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)QA出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度均為1cm/s.以AQ、PQ為邊作AQPD,連接DQ,交AB于點(diǎn)E.設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤6).解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),AQPD為矩形.

(2)當(dāng)t為何值時(shí),AQPD為菱形.

(3)是否存在某一時(shí)刻t,使四邊形AQPD的面積等于四邊形PQCB的面積,若存在,請(qǐng)求出t值,若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) 當(dāng)t=時(shí),AQPD是矩形;(2) 當(dāng)t=時(shí),□AQPD是菱形;(3)

【解析】

(1)利用矩形的性質(zhì)得到△APQ∽△ABC,利用相似三角形對(duì)應(yīng)邊的比相等列出比例式即可求得t值;

(2)利用菱形的對(duì)角線相互垂直平分解答;

(3)過(guò)點(diǎn)PPM⊥ACM.先表示出△APQ的面積和S四邊形PQCB=S△ABC﹣S△APQ,進(jìn)而建立方程即可得出結(jié)論.

:(1)如圖2,當(dāng)AQPD是矩形時(shí),PQAC,

PQBC,

∴△APQ∽△ABC

=,

由運(yùn)動(dòng)知,QA=t,BP=t,

AP=AB﹣BP=12﹣t,

即,=,

解之 t=,

∴當(dāng)t=時(shí),AQPD是矩形;

(2)當(dāng)AQPD是菱形時(shí),DQAP,AE=AP

cosBAC==

由運(yùn)動(dòng)知,QA=t,BP=t,

AP=AB﹣BP=12﹣t,AE=6﹣t,

解之 t=,

所以當(dāng)t=時(shí),□AQPD是菱形;

(3)存在時(shí)間t,使四邊形AQPD的面積等于四邊形PQCB的面積.

RtABC中,根據(jù)勾股定理得,BC=4

如圖3,過(guò)點(diǎn)PPMACM.

=,

=,

PM=(12﹣t).

SAPQ=AQ×PM=×t×(12﹣t),

S四邊形PQCB=SABC﹣SAPQ=×4×8﹣×t×(12﹣t),

∵四邊形AQPD的面積等于四邊形PQCB的面積,

×t×(12﹣t)=×4×8﹣×t×(12﹣t),

t= (舍)或t=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過(guò)點(diǎn)AADx軸交拋物線于點(diǎn)D.

(1)求此拋物線的表達(dá)式;

(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)在直線AD上,求△EAD的面積;

(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量校園內(nèi)一棵不可攀的樹(shù)的高度,學(xué)校數(shù)學(xué)應(yīng)用實(shí)踐小組做了如下的探索:根據(jù)光的反射定律,利用一面鏡子和皮尺,設(shè)計(jì)如圖所示的測(cè)量方案:把鏡子放在離樹(shù)AB的樹(shù)根7.2m的點(diǎn)E處,然后觀測(cè)者沿著直線BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹(shù)梢頂點(diǎn)A,再用皮尺量得DE=2.4m,觀測(cè)者目高CD=1.6m,則樹(shù)高AB約是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線,為圖形內(nèi)一點(diǎn),連接

1)如圖①,寫(xiě)出,,之間的等量關(guān)系,并證明你的結(jié)論;

2)如圖②,請(qǐng)直接寫(xiě)出,,之間的關(guān)系式;

3)你還能就本題作出什么新的猜想?請(qǐng)畫(huà)圖并寫(xiě)出你的結(jié)論(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門(mén)要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)AB的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫(xiě)出畫(huà)法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線交于點(diǎn),順次聯(lián)結(jié)ABCD各邊中點(diǎn)得到的一個(gè)新的四邊形,如果添加下列四個(gè)條件中的一個(gè)條件:①;②;③;④,可以使這個(gè)新的四邊形成為矩形,那么這樣的條件個(gè)數(shù)是()

A. 1個(gè);B. 2個(gè);

C. 3個(gè);D. 4個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,小明利用同弧所對(duì)的圓周角及圓心角的性質(zhì)探索了一些問(wèn)題,下面請(qǐng)你和小明一起進(jìn)入探索之旅.

(1)如圖1,ABC中,∠A=30°,BC=2,則ABC的外接圓的半徑為 ;

(2)如圖2,在矩形ABCD中,請(qǐng)利用以上操作所獲得的經(jīng)驗(yàn),在矩形ABCD內(nèi)部用直尺與圓規(guī)作出一點(diǎn)P,點(diǎn)P滿足;∠BPC=BEC,且PB=PC;(要求:用直尺與圓規(guī)作出點(diǎn)P,保留作圖痕跡.)

(3)如圖3,在平面直角坐標(biāo)系的第一象限內(nèi)有一點(diǎn)B,坐標(biāo)為(2,m),過(guò)點(diǎn)BABy軸,BCx軸,垂足分別為A、C,若點(diǎn)P在線段AB上滑動(dòng)(點(diǎn)P可以與點(diǎn)A、B重合),發(fā)現(xiàn)使得∠OPC=45°的位置有兩個(gè),則m的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果

下面有三個(gè)推斷:

①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;

②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;

③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點(diǎn)A.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長(zhǎng)是(  )

A. 2海里 B. 2sin 55°海里

C. 2cos 55°海里 D. 2tan 55°海里

查看答案和解析>>

同步練習(xí)冊(cè)答案