如果x-2y=5,那么2x-4y-3=                           

 

【答案】

7

【解析】

試題分析:由題意分析得到:2x-4y-3=2(x-2y)-3=

考點:代數(shù)式運算

點評:本題屬于對代數(shù)式的分析計算運用,考生只需對所求代數(shù)式變形代入即可

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

我國著名數(shù)學家蘇步青在訪問德國時,德國一位數(shù)學家給他出了這樣一道題目:
甲、乙二人相對而行,他們相距10千米,甲每小時走3千米,乙每小時走2千米,甲帶著一條狗,狗每小時跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時候向甲跑去,碰到甲的時候又向乙跑去,問當甲、乙兩人相遇時,這條狗一共跑了多少千米?
蘇步青教授很快就解出了這道題目.同學們,你知道他是怎么解的嗎?
這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計算狗從甲的身邊跑到乙的身邊的路程s,再計算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時間與狗所走的時間相等,即10÷(3+2)=2(小時),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
蘇步青教授在解題時,把注意力和著眼點放在問題的整體結(jié)構(gòu)上,從而能觸及問題的實質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時間,恰好是甲、乙二人相遇所用的時間,從而使問題得到巧妙地解決.蘇教授這種解決問題的思想方法實際上就是數(shù)學中的整體思想的應用.對于某些數(shù)學問題,靈活運用整體思想,常可化難為易,捷足先登.在解二元一次方程組時,也要注意這種思想方法的應用.
比如解方程組
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程組的解為
x=2
y=-
1
2

同學們,你會用同樣的方法解下面兩個方程嗎?試試看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面解方程組的方法,然后回答有關問題:
解方程組
19x+18y=17①
17x+16y=15②
時,如果直接消元,那將是很繁瑣的,若采用下面的解法則會簡便許多.
解:①-②,得2x+2y=2,即x+y=1③
③×16,得16x+16y=16④
②-④,得x=-1,從而y=2∴方程組的解為
x=-1
y=2

請你采用上述方法解方程組:
2006x+2005y=2004
2004x+2003y=2002

并猜測關于x、y的方程組
(a+2)x+(a+1)y=a
(b+2)x+(b+1)y=b
(a≠b)
的解是什么?并利用方程組的解加以驗證.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

仔細閱讀下面解方程組得方法,然后解決有關問題:
解方程組
19x+18y=17    ①
17x+16y=15    ②
 時,如果直接消元,那將時很繁瑣的,若采用下面的解法,則會簡單很多.
解:①-②,得:2x+2y=2,即x+y=1 ③
③×16,得:16x+16y=16  ④
②-④,得:x=-1
將x=-1
代入③得:y=2
∴方程組的解為:
x=-1
y=2

(1)請你采用上述方法解方程組:
2014x+2013y=2012
2012x+2011y=2010

(2)請你采用上述方法解關于x,y的方程組
(a+2)x+(a+1)y=a
(b+2)x+(b+1)y=b
(a≠b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列解方程組的方法:
解方程組
19x+18y=17
17x+16y=15
時,我們?nèi)绻紤]直接消元,那將是非常麻煩的,而采用下面的解法會比較簡單.由①-②,得2x+2y=2,所以x+y=1③.由③×16,得16x+16y=16④,②-④,得x=-1,從而y=2.所以原方程組的解是
x=-1
y=2

請解決下列問題:
(1)解方程組
2012x+2011y=2010
2010x+2009y=2008
;
(2)解關于x,y的方程組
(a+2)x+(a+1)y=a
(b+2)x+(b+1)y=b
(a≠b).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下面解方程組的方法,然后回答有關問題:
解方程組數(shù)學公式時,如果直接消元,那將是很繁瑣的,若采用下面的解法則會簡便許多.
解:①-②,得2x+2y=2,即x+y=1③
③×16,得16x+16y=16④
②-④,得x=-1,從而y=2∴方程組的解為數(shù)學公式
請你采用上述方法解方程組:數(shù)學公式
并猜測關于x、y的方程組數(shù)學公式的解是什么?并利用方程組的解加以驗證.

查看答案和解析>>

同步練習冊答案