已知AB是半圓O的直徑,點(diǎn)C是半圓O上的動(dòng)點(diǎn),點(diǎn)D是線段AB延長線上的動(dòng)點(diǎn),在運(yùn)動(dòng)過程中,保持CD=OA.

(1)當(dāng)直線CD與半圓O相切時(shí)(如圖①),求∠ODC的度數(shù);

(2)當(dāng)直線CD與半圓O相交時(shí)(如圖②),設(shè)另一交點(diǎn)為E,連接AE,若AE∥OC,

①AE與OD的大小有什么關(guān)系?為什么?

②求∠ODC的度數(shù).


解:(1)如圖①,連接OC,

∵OC=OA,CD=OA,

∴OC=CD,

∴∠ODC=∠COD,

∵CD是⊙O的切線,

∴∠OCD=90°,

∴∠ODC=45°;

(2)如圖②,連接OE.

∵CD=OA,∴CD=OC=OE=OA,

∴∠1=∠2,∠3=∠4.

∵AE∥OC,

∴∠2=∠3.

設(shè)∠ODC=∠1=x,則∠2=∠3=∠4=x.

∴∠AOE=∠OCD=180°﹣2x.

①AE=OD.理由如下:

在△AOE與△OCD中,

∴△AOE≌△OCD(SAS),

∴AE=OD.

②∠6=∠1+∠2=2x.

∵OE=OC,∴∠5=∠6=2x.

∵AE∥OC,

∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,

∴x=36°.

∴∠ODC=36°.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


數(shù)據(jù)5,8,4,5,3的眾數(shù)和平均數(shù)分別是( 。

 

A.

8,5

B.

5,4

C.

5,5

D.

4,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


20140﹣(﹣1)2014+﹣|﹣3|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算:×= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


先化簡,再求值:(1+)•,其中x=+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


ABC外接圓半徑為R,且2R()=,則角C=(    )

A.30°             B.45°             C.60°                 D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


ABC中,若=4,則邊AB的長為(    )

A.             B.              C.        D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是(  )

 

A.

相交

B.

內(nèi)切

C.

外離

D.

內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2

(1)求證:無論k取何實(shí)數(shù)值,拋物線總與x軸有兩個(gè)不同的交點(diǎn);

(2)拋物線于x軸交于點(diǎn)A、B,直線與x軸交于點(diǎn)C,設(shè)A、B、C三點(diǎn)的橫坐標(biāo)分別是x1、x2、x3,求x1•x2•x3的最大值;

(3)如果拋物線與x軸的交點(diǎn)A、B在原點(diǎn)的右邊,直線與x軸的交點(diǎn)C在原點(diǎn)的左邊,又拋物線、直線分別交y軸于點(diǎn)D、E,直線AD交直線CE于點(diǎn)G(如圖),且CA•GE=CG•AB,求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案