【題目】如圖,直線,與和分別相切于點和點.點和點分別是和上的動點,沿和平移.的半徑為,.下列結(jié)論錯誤的是( )
A. B. 和的距離為
C. 若,則與相切 D. 若與相切,則
【答案】D
【解析】
首先過點N作NC⊥AM于點C,直線l1∥l2,⊙O與l1和l2分別相切于點A和點B,⊙O的半徑為1,易求得MN==,l1和l2的距離為2;若∠MON=90°,連接NO并延長交MA于點C,易證得CO=NO,繼而可得即O到MN的距離等于半徑,可證得MN與⊙O相切;由題意可求得若MN與⊙O相切,則AM=或.
如圖1,過點N作NC⊥AM于點C,
∵直線l1∥l2,⊙O與l1和l2分別相切于點A和點B,⊙O的半徑為1,
∴CN=AB=2,
∵∠1=60°,
∴MN==,
故A與B正確;
如圖2,
若∠MON=90°,連接NO并延長交MA于點C,則△AOC≌△BON,
故CO=NO,△MON≌△MOM′,故MN上的高為1,即O到MN的距離等于半徑.
故C正確;
如圖3,
∵MN是切線,⊙O與l1和l2分別相切于點A和點B,
∴∠AMO=∠1=30°,
∴AM=;
∵∠AM′O=60°,
∴AM′=,
∴若MN與⊙O相切,則AM=或;
故D錯誤.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】(模型建立)
如圖1,等腰直角三角形中,,,直線經(jīng)過點,過作于點,過作于點.
求證:;
(模型應用)
①已知直線:與軸交于點,與軸交于點,將直線繞著點逆時針旋轉(zhuǎn)至直線,如圖2,求直線的函數(shù)表達式;
②如圖3,在平面直角坐標系中,點,作軸于點,作軸于點,是線段上的一個動點,點是直線上的動點且在第一象限內(nèi).問點、、能否構(gòu)成以點為直角頂點的等腰直角三角形,若能,請直接寫出此時點的坐標,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課外興趣小組活動時,老師提出了如下問題:
如圖,在中,若,,求邊上的中線的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長到,使得,再連接(或?qū)?/span>繞點逆時針旋轉(zhuǎn)得到),把、、集中在中,利用三角形的三邊關系可得,則.
[感悟]解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
解決問題:受到的啟發(fā),請你證明下列命題:如圖,在中,是邊上的中點,,交于點,交于點,連接.求證:,若,探索線段、、之間的等量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習了“等邊三角形”后,激發(fā)了他的學習和探究的興趣,就想考考他的朋友小崔,小明作了一個等邊,如圖1,并在邊上任意取了一點(點不與點、點重合),過點作交于點,延長到,使得,連接交于點.
(1)若,求的長度;
(2)如圖2,延長到,再延長到,使得,連接,,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四張背面完全相同的紙牌、、、,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.
用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用、、、表示);
求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt中,∠C=90°,AC=BC,在線段CB延長線上取一點P,以AP為直角邊,點P為直角頂點,在射線CB上方作等腰 Rt, 過點D作DE⊥CB,垂足為點E.
(1) 依題意補全圖形;
(2) 求證: AC=PE;
(3) 連接DB,并延長交AC的延長線于點F,用等式表示線段CF與AC的數(shù)量關系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com