【題目】某中學為了美化校園環(huán)境,計劃購進桂花樹和黃桷樹兩種樹苗共200棵,現(xiàn)通過調(diào)查了解到:若購進15棵桂花樹和6棵黃桷樹共需600元,若購進12棵桂花樹和5棵黃桷樹共需490元.
(1)求購進的桂花樹和黃桷樹的單價各是多少元?
(2)已知甲、乙兩個苗圃的兩種樹苗銷售價格和上述價格一樣,但有如下優(yōu)惠:甲苗圃:每購買一棵黃桷樹送兩棵桂花樹,購買的其它桂花樹打9折.乙苗圃:購買的黃桷樹和桂花樹都打7折.設(shè)購買黃桷樹x棵,y1和y2分別表示到甲、乙兩個苗圃中購買樹苗所需總費用,求出y1和y2關(guān)于x的函數(shù)表達式;
(3)現(xiàn)在,學校根據(jù)實際需要購買的黃桷樹的棵數(shù)不少于35棵且不超過40棵,請設(shè)計一種購買方案,使購買的樹苗所花費的總費用最少.最少費用是多少?
【答案】(1)購進的桂花樹為20元/棵,黃桷樹為50元/棵;(2)y1=﹣4x+3600,y2=21x+2800;(3)到甲苗圃購買40棵黃桷樹,160棵桂花樹時,費用最小,最少費用為3440元.
【解析】
(1)設(shè)購進的桂花樹為x元/棵,黃桷樹為y元/棵,由題意可列方程組,可求得答案;
(2)利用題目中所給的方案,分別表示y1、y2即可;
(3)令y1=y2,可求得x=32,利用一次函數(shù)的增減性,進行判斷即可.
(1)設(shè)購進的桂花樹為x元/棵,黃桷樹為y元/棵,
由題意,解得,
答:購進的桂花樹為20元/棵,黃桷樹為50元/棵;
(2)由題意可得y1=50x+(200﹣x﹣2x)×20×90%,即y1=﹣4x+3600,
y2=[50x+(200﹣x)×20]×70%,即y2=21x+2800;
(2)∵當y1=y2時,即﹣4x+3600=21x+2800,解得x=32,
∴當x=32時,y1=y2,即當x=32時,到兩家苗圃購買費用一樣,
∵y1隨x的增大而減小,y2可隨x的增大而增大,
∴選擇到甲苗圃購買,
∵35≤x≤40,
∴當x=40時,費用最少為:y=﹣4×40+3600=3440元,
即到甲苗圃購買40棵黃桷樹,160棵桂花樹時,費用最小,最少費用為3440元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,BD為對角線.
(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,若AB=4,求△DEF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,點E在BC邊上,點F在DC的延長線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,、、的平分線交于.
(1)是什么角?(直接寫結(jié)果)
(2)如圖2,過點的直線交射線于點,交射線于點,觀察線段,你有何發(fā)現(xiàn)?并說明理由.
(3)如圖2,過點的直線交射線于點,交射線于點,求證:;
(4)如圖3,過點的直線交射線的反向延長線于點,交射線于點,,,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則( 。
①B地在C地的北偏西50°方向上;
②A地在B地的北偏西30°方向上;
③cos∠BAC=;
④∠ACB=50°.其中錯誤的是( )
A. ①② B. ②④ C. ①③ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,F(xiàn)N∥DC,則∠F的度數(shù)為( 。
A. 70° B. 80° C. 90° D. 100°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x﹣5與x軸交于A,B兩點(電B在點A的右側(cè)),與y軸交于點C,拋物線的對稱軸與x軸交于點D.
(1)求A,B,C三點的坐標及拋物線的對稱軸.
(2)如圖1,點E(m,n)為拋物線上一點,且2<m<5,過點E作EF∥x軸,交拋物線的對稱軸于點F,作EH⊥x軸于點H,求四邊形EHDF周長的最大值.
(3)如圖2,點P為拋物線對稱軸上一點,是否存在點P,使以點P,B,C為頂點的三角形是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com