精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,點EBC邊上,點FDC的延長線上,且∠DAE=F

1)求證:△ABE∽△ECF;

2)若AB=5,AD=8,BE=2,求FC的長。

【答案】1)欲求△ABE∽△ECF ,由已知得到兩三角形兩個對應角相等,所以,兩三角行相似(2FC=

【解析】

試題由題意根據平行四邊形的性質,可得到兩個三角形的對應角相等,∴△ABE∽△ECF,再由相似比,得到所求的值。(1)證明:如圖.

四邊形ABCD是平行四邊形,

ABCD,ADBC.

∴∠B=∠ECFDAE=∠AEB……2

∵∠DAE=∠F,

∴∠AEB=∠F.

∴△ABE∽△ECF........................................................ 3

2)解:∵△ABE∽△ECF,

. ............................................................ 4

四邊形ABCD是平行四邊形,

BC=AD=8.

EC=BCBE=82="6."

.

. ……………………………………………5

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,ABBC,射線CMBC,且BC=4,AB=1,點P是線段BC(不與點B、C重合)上的動點,過點PDPAP交射線CM于點D,連結AD.

(1)如圖1,若BP=3,求△ABP的周長;

(2)如圖2,若DP平分∠ADC,試猜測PBPC的數量關系,并說明理由;

(3)若△PDC是等腰三角形,作點B關于AP的對稱點B′,連結B′D,則B′D=_____.(請直接寫出答案)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩個工程隊共同參與一項筑路工程,甲隊單獨施工3個月,這時增加了乙隊,兩隊又共同工作了2個月,總工程全部完成,已知甲隊單獨完成全部工程比乙隊單獨完成全部工程多用2個月,設甲隊單獨完成全部工程需個月,則根據題意可列方程中錯誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一輛汽車開往距離出發(fā)地的目的地,出發(fā)后第一小時內按原計劃的速度勻速行駛,一小時后以原來速度的15倍勻速行駛,并比原計劃提前到達目的地,設前一個小時的行駛速度為

1)直接用的式子表示提速后走完剩余路程的時間為

2)求汽車實際走完全程所花的時間.

3)若汽車按原路返回,司機準備一半路程以的速度行駛,另一半路程以的速度行駛(),朋友提醒他一半時間以的速度行駛,另一半時間以的速度行駛更快,你覺得誰的方案更快?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知yx的反比例函數,且當x2時,y=﹣3

1)求yx之間的函數關系式;

2)畫出這個函數的圖象;

3)試判斷點P(﹣2,3)是否在這個函數的圖象上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“軍運會期間,某紀念品店老板用5000元購進一批紀念品,由于深受顧客喜愛,很快售完,老板又用6000元購進同樣數目的這種紀念品,但第二次每個進價比第一次每個進價多了2

1)求該紀念品第一次每個進價是多少元?

2)老板以每個15元的價格銷售該紀念品,當第二次紀念品售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二次的銷售利潤不低于900元,剩余的紀念品每個售價至少要多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了美化校園環(huán)境,計劃購進桂花樹和黃桷樹兩種樹苗共200棵,現(xiàn)通過調查了解到:若購進15棵桂花樹和6棵黃桷樹共需600元,若購進12棵桂花樹和5棵黃桷樹共需490元.

(1)求購進的桂花樹和黃桷樹的單價各是多少元?

(2)已知甲、乙兩個苗圃的兩種樹苗銷售價格和上述價格一樣,但有如下優(yōu)惠:甲苗圃:每購買一棵黃桷樹送兩棵桂花樹,購買的其它桂花樹打9折.乙苗圃:購買的黃桷樹和桂花樹都打7折.設購買黃桷樹x棵,y1和y2分別表示到甲、乙兩個苗圃中購買樹苗所需總費用,求出y1和y2關于x的函數表達式;

(3)現(xiàn)在,學校根據實際需要購買的黃桷樹的棵數不少于35棵且不超過40棵,請設計一種購買方案,使購買的樹苗所花費的總費用最少.最少費用是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同

(1)求小明選擇去白鹿原游玩的概率;

(2)用樹狀圖或列表的方法求小明和小華選擇去同一個地方游玩的概率.

查看答案和解析>>

同步練習冊答案