【題目】如圖,在□ABCD中,點E在BC邊上,點F在DC的延長線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的長。
【答案】(1)欲求△ABE∽△ECF ,由已知得到兩三角形兩個對應角相等,所以,兩三角行相似(2)FC=
【解析】
試題由題意根據平行四邊形的性質,可得到兩個三角形的對應角相等,∴△ABE∽△ECF,再由相似比,得到所求的值。(1)證明:如圖.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC.
∴∠B=∠ECF,∠DAE=∠AEB.……2分
又∵∠DAE=∠F,
∴∠AEB=∠F.
∴△ABE∽△ECF. ........................................................ 3分
(2)解:∵△ABE∽△ECF,
∴. ............................................................ 4分
∵四邊形ABCD是平行四邊形,
∴BC=AD=8.
∴EC=BCBE=82="6."
∴.
∴. ……………………………………………5分
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥BC,射線CM⊥BC,且BC=4,AB=1,點P是線段BC(不與點B、C重合)上的動點,過點P作DP⊥AP交射線CM于點D,連結AD.
(1)如圖1,若BP=3,求△ABP的周長;
(2)如圖2,若DP平分∠ADC,試猜測PB和PC的數量關系,并說明理由;
(3)若△PDC是等腰三角形,作點B關于AP的對稱點B′,連結B′D,則B′D=_____.(請直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個工程隊共同參與一項筑路工程,甲隊單獨施工3個月,這時增加了乙隊,兩隊又共同工作了2個月,總工程全部完成,已知甲隊單獨完成全部工程比乙隊單獨完成全部工程多用2個月,設甲隊單獨完成全部工程需個月,則根據題意可列方程中錯誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛汽車開往距離出發(fā)地的目的地,出發(fā)后第一小時內按原計劃的速度勻速行駛,一小時后以原來速度的1.5倍勻速行駛,并比原計劃提前到達目的地,設前一個小時的行駛速度為
(1)直接用的式子表示提速后走完剩余路程的時間為
(2)求汽車實際走完全程所花的時間.
(3)若汽車按原路返回,司機準備一半路程以的速度行駛,另一半路程以的速度行駛(),朋友提醒他一半時間以的速度行駛,另一半時間以的速度行駛更快,你覺得誰的方案更快?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y是x的反比例函數,且當x=2時,y=﹣3,
(1)求y與x之間的函數關系式;
(2)畫出這個函數的圖象;
(3)試判斷點P(﹣2,3)是否在這個函數的圖象上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“軍運會”期間,某紀念品店老板用5000元購進一批紀念品,由于深受顧客喜愛,很快售完,老板又用6000元購進同樣數目的這種紀念品,但第二次每個進價比第一次每個進價多了2元.
(1)求該紀念品第一次每個進價是多少元?
(2)老板以每個15元的價格銷售該紀念品,當第二次紀念品售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二次的銷售利潤不低于900元,剩余的紀念品每個售價至少要多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了美化校園環(huán)境,計劃購進桂花樹和黃桷樹兩種樹苗共200棵,現(xiàn)通過調查了解到:若購進15棵桂花樹和6棵黃桷樹共需600元,若購進12棵桂花樹和5棵黃桷樹共需490元.
(1)求購進的桂花樹和黃桷樹的單價各是多少元?
(2)已知甲、乙兩個苗圃的兩種樹苗銷售價格和上述價格一樣,但有如下優(yōu)惠:甲苗圃:每購買一棵黃桷樹送兩棵桂花樹,購買的其它桂花樹打9折.乙苗圃:購買的黃桷樹和桂花樹都打7折.設購買黃桷樹x棵,y1和y2分別表示到甲、乙兩個苗圃中購買樹苗所需總費用,求出y1和y2關于x的函數表達式;
(3)現(xiàn)在,學校根據實際需要購買的黃桷樹的棵數不少于35棵且不超過40棵,請設計一種購買方案,使購買的樹苗所花費的總費用最少.最少費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同
(1)求小明選擇去白鹿原游玩的概率;
(2)用樹狀圖或列表的方法求小明和小華選擇去同一個地方游玩的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com