【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F,G,連接DE,DG

(1)請(qǐng)判斷四邊形EBGD的形狀,并說明理由;

(2)若∠ABC=60°,C=45°DE=,求BC的長.

【答案】(1)四邊形EBGD為菱形23+3

【解析】試題分析:(1)先證明四邊形BEDG為平行四邊形,再根據(jù)一組鄰邊相等的平行四邊形得出四邊形EBGD為菱形
(2)作EM⊥BCM,先求得BMCM的值,再根據(jù)BC=BM+CM即可

試題解析:

1)四邊形EBGD為菱形;

理由:∵EG垂直平分BD,

EB=ED,GB=GD,

∴∠EBD=EDB,

∵∠EBD=DBC,

∴∠EDF=GBF

DEBG,同理BEDG,

∴四邊形BEDG為平行四邊形,

又∵DE=BE

∴四邊形EBGD為菱形;

2)如答圖,過DDMBCM,由(1)知,∠DGC=ABC=60°,DBM=ABC=30°,DE=DG=,

∴在RtDMG中,得DM=3,在RtDMB中,得BM=,

又∵∠C=45°,

CM=DM=3,

BC=3+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在∠A內(nèi)部有一點(diǎn)P,連接BPCP,請(qǐng)回答下列問題:

1)求證:∠P=∠1+A+2;

2)如圖2,利用上面的結(jié)論,在五角星中,∠A+B+C+D+E   ;

3)如圖3,如果在∠BAC間有兩個(gè)向上突起的角,請(qǐng)你根據(jù)前面的結(jié)論猜想∠1、∠2、∠3、∠4、∠5、∠A之間有什么等量關(guān)系,直接寫出結(jié)論即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交AC于點(diǎn)D,動(dòng)點(diǎn)P在拋物線對(duì)稱軸上,動(dòng)點(diǎn)Q在拋物線上

(1)求拋物線的解析式;

(2)當(dāng)PO+PC的值最小時(shí),求點(diǎn)P的坐標(biāo);

(3)是否存在以AC,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)cb是最小的正整數(shù),且a,b滿足 +(c-7)2=0.

(1) a= ,b= c=

(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.

(3) 點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和4個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)

(4) 請(qǐng)問:3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個(gè)教師承擔(dān)本學(xué)期期末考試的第17題的網(wǎng)上閱卷任務(wù),若由這三人中的某一人獨(dú)立完成閱卷任務(wù),則甲需要15小時(shí),乙需要10小時(shí),丙需要8小時(shí)。

1)如果甲、乙、丙三人同時(shí)改卷,那么需要多少時(shí)間完成?

2)如果按照甲、乙、丙、甲、乙、丙、……的次序輪流閱卷,每一輪中每人各閱卷1小時(shí)。那么要多少小時(shí)完成?

3)能否把(2)題所說的甲、乙、丙的次序作適當(dāng)調(diào)整,其余的不變,使得完成這項(xiàng)任務(wù)的時(shí)間至少提前半小時(shí)?(答題要求:如認(rèn)為不能,需要說明理由;如認(rèn)為能,請(qǐng)至少說出一種輪流的次序,并求出相應(yīng)能提前多少時(shí)間完成閱卷任務(wù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實(shí)市委政府提出的精準(zhǔn)扶貧精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12/輛和8/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:

車型

目的地

A村(元/輛)

B村(元/輛)

大貨車

800

900

小貨車

400

600

(1)求這15輛車中大小貨車各多少輛?

(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出yx的函數(shù)解析式.

(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點(diǎn)A(-2,0),與y軸交于點(diǎn)C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn)B(m,n),連結(jié)OB.若SAOB=6,SBOC=2.

(1)求一次函數(shù)的表達(dá)式;

(2)求反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB與⊙O相切于點(diǎn)C,OA,OB分別交⊙O于點(diǎn)D,E,CD=CE.

(1)求證:OA=OB

(2)已知AB=4,OA=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王大伯承包了25畝土地,今年春季改種茄子和西紅柿兩種大棚蔬菜,其中種茄子每畝可獲利2400元,種西紅柿每畝可獲利2600元,王大伯一共獲純利多少元.

1)若設(shè)種茄子x畝,用含有x的式子填下表:

畝數(shù)

每畝可獲利

總獲利

茄子

西紅柿

2)王大伯種兩種蔬菜一共獲純利多少元.(用含x的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案