(2013•梅州)如圖,在△ABC中,AB=2,AC=,以A為圓心,1為半徑的圓與邊BC相切,則∠BAC的度數(shù)是    度.
【答案】分析:首先通過作輔助線構(gòu)建直角三角形,然后解直角三角形即可.
解答:解:設(shè)圓與BC切于點D,連接AD,
則AD⊥BC;
在直角△ABD中AB=2,AD=1,
∴∠B=30°,
因而∠BAD=60°,
同理,在直角△ACD中,得到∠CAD=45°,
因而∠BAC的度數(shù)是105°.
點評:運用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梅州)如圖,已知△ABC是腰長為1的等腰直角三形,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推,則第2013個等腰直角三角形的斜邊長是
2
2013
2
2013

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梅州)如圖,在平面直角坐標(biāo)系中,A(-2,2),B(-3,-2)
(1)若點C與點A關(guān)于原點O對稱,則點C的坐標(biāo)為
(2,-2)
(2,-2)
;
(2)將點A向右平移5個單位得到點D,則點D的坐標(biāo)為
(3,2)
(3,2)
;
(3)由點A,B,C,D組成的四邊形ABCD內(nèi)(不包括邊界)任取一個橫、縱坐標(biāo)均為整數(shù)的點,求所取的點橫、縱坐標(biāo)之和恰好為零的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梅州)如圖,在矩形ABCD中,AB=2DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設(shè)DA=2.
(1)求線段EC的長;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梅州)如圖,在四邊形ABFC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB與點E,且CF=AE,
(1)求證:四邊形BECF是菱形;
(2)若四邊形BECF為正方形,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梅州)如圖,已知拋物線y=2x2-2與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)寫出以A,B,C為頂點的三角形面積;
(2)過點E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(點M在點N的左側(cè)),以MN為一邊,拋物線上的任一點P為另一頂點做平行四邊形,當(dāng)平行四邊形的面積為8時,求出點P、N的坐標(biāo);
(3)過點D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點Q(點Q在第一象限),使得以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似,求線段QD的長(用含m的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案