【題目】如圖,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C′,且點B剛好落在A′B′上,若∠A=25°,∠BCA′=45°,則∠A′BA等于( 。
A. 30° B. 35° C. 40° D. 45°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程的解為整數(shù),且不等式組無解,則這樣的非負(fù)整數(shù)a有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列的網(wǎng)格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點B的坐標(biāo)為(-3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點的坐標(biāo);
(3)根據(jù)(2)中的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并標(biāo)出B2、C2兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是正方形,M是AB延長線上一點.直角三角尺的一條直角邊經(jīng)過點D,且直角頂點E在AB邊上滑動(點E不與點A、B重合),另一直角邊與∠CBM的平分線BF相交于點F.
(1)如圖1,當(dāng)點E在AB邊得中點位置時:
①通過測量DE、EF的長度,猜想DE與EF滿足的數(shù)量關(guān)系是 .
②連接點E與AD邊的中點N,猜想NE與BF滿足的數(shù)量關(guān)系是 ,請證明你的猜想.
(2)如圖2,當(dāng)點E在AB邊上的任意位置時,猜想此時DE與EF有怎樣的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,其中AB=4,∠AOC=120°,P為⊙O上的動點,連AP,取AP中點Q,連CQ,則線段CQ的最大值為( 。
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市東湖高新技術(shù)開發(fā)區(qū)某科技公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進一步投入資金1520萬元購買生產(chǎn)設(shè)備,進行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價不低于100元,但不超過200元.設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利為w(萬元)該產(chǎn)品年銷售量y(萬件)與產(chǎn)品售價x(元)之間的函數(shù)關(guān)系如圖所示.
(1)直接寫出y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損?并求當(dāng)盈利最大或虧損最小時的產(chǎn)品售價;
(3)在(2)的條件下.即在盈利最大或虧損最小時,第二年公司重新確定產(chǎn)品售價,能否使兩年共盈利不低于1370萬元?若能,求出第二年的售價在什么范圍內(nèi);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解本校學(xué)生對球類運動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調(diào)查了若干名學(xué)生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.
(1)在這次調(diào)查活動中,一共調(diào)查了 名學(xué)生,并請補全統(tǒng)計圖.
(2)“羽毛球”所在的扇形的圓心角是 度.
(3)若該校有學(xué)生1200名,估計愛好乒乓球運動的約有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②a﹣b+c<0;③4a+b+c=0;④拋物線的頂點坐標(biāo)為(2,b);⑤當(dāng)x<1時,y隨x增大而增大.其中結(jié)論正確的是( 。
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com