【題目】已知AD∥BC,AB∥CD,E為射線BC上一點(diǎn),AE平分∠BAD.
(1)如圖1,當(dāng)點(diǎn)E在線段BC上時(shí),求證:∠BAE=∠BEA.
(2)如圖2,當(dāng)點(diǎn)E在線段BC延長(zhǎng)線上時(shí),連接DE,若∠ADE=3∠CDE,∠AED=60°.
①求證∠ABC=∠ADC;
②求∠CED的度數(shù).
【答案】(1)證明見解析;(2)①證明見解析;②∠CED=135°.
【解析】
試題(1)根據(jù)平行線的性質(zhì)求出∠DAE=∠BEA,由AE平分∠BAD得∠BAE=∠DAE,從而得出結(jié)論.
(2)①AD∥BC,AB∥CD即可得出結(jié)論;
②由根據(jù)∠ADE=3∠CDE設(shè)∠CDE=x°,∠ADE=3x°,∠ADC=2x°,根據(jù)平行線的性質(zhì)得出方程90-x+60+3x=180,求出x即可.
試題解析:(1)證明:∵AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠DAE=∠BAE,
∴∠BAE=∠BEA;
(2)①∵AD∥BC
∴∠ADC=∠DCE;
∵AB∥CD
∴∠ABC=∠DCE;
∴∠ABC=∠ADC;
②∵∠ADE=3∠CDE,設(shè)∠CDE=x°,
∴∠ADE=3x°,∠ADC=2x°,
∵AB∥CD,
∴∠BAD+∠ADC=180°,
∴∠DAB=180°-2x°,
由(1)可知:∠DAE=∠BAE=∠BEA=90°-x°,
∵AD∥BC,
∴∠BED+∠ADE=180°,
∵∠AED=60°,
即90-x+60+3x=180,
∴∠CDE=x°=15°,∠ADE=45°,
∵AD∥BC,
∴∠CED=180°-∠ADE=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)(﹣1,y1),(4,y2)在一次函數(shù)y=3x﹣2的圖象上,則y1 , y2 , 0的大小關(guān)系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小李8時(shí)騎自行車從家里出發(fā),到野外郊游,16時(shí)回到家里.他離家的距離s(千米)與時(shí)間t(時(shí))之間的關(guān)系可以用圖中的折線表示.現(xiàn)有如下信息:
①小李到達(dá)離家最遠(yuǎn)的地方是14時(shí);
②小李第一次休息時(shí)間是10時(shí);
③11時(shí)到12時(shí),小李騎了5千米;
④返回時(shí),小李的平均速度是10千米/時(shí).
其中,正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)請(qǐng)把△ABC先向右移動(dòng)5個(gè)單位,再向下移動(dòng)3個(gè)單位得到△A′B′C′,在圖中畫出△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)請(qǐng)直接寫出點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為 ;
(2)將△ABC平移,使點(diǎn)B移動(dòng)后的坐標(biāo)為B′(﹣5,﹣5),畫出平移后的圖形△A′B′C′;
(3)將△ABC繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形△A″B″C″.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠MON=51°,點(diǎn)P在∠MON的內(nèi)部,點(diǎn)D是邊ON上任意一點(diǎn),點(diǎn)C是邊OM上任意一點(diǎn),連接PD、PC,當(dāng)△PCD的周長(zhǎng)最小時(shí),∠CPD的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD的頂點(diǎn)為A(1,2),B(﹣1,2),C,(﹣1,﹣2),D(1,﹣2),點(diǎn)M和點(diǎn)N同時(shí)從E點(diǎn)出發(fā),沿四邊形的邊做環(huán)繞勻速運(yùn)動(dòng),M點(diǎn)以1單位/s的速度做逆時(shí)針運(yùn)動(dòng),N點(diǎn)以2單位/s的速度做順時(shí)針運(yùn)動(dòng),則點(diǎn)M和點(diǎn)N第2019次相遇時(shí)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】代數(shù)式ax2+bx+c(a≠0,a,b,c是常數(shù))中,x與ax2+bx+c的對(duì)應(yīng)值如下表:
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | |||
ax2+bx+c | ﹣2 | ﹣ | 1 | 2 | 1 | ﹣ | ﹣2 |
請(qǐng)判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數(shù))的兩個(gè)根x1 , x2的取值范圍是下列選項(xiàng)中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2<
C.﹣ <x1<0,2<x2<
D.﹣1<x1<﹣ , <x2<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家規(guī)定“中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí)”.為此,某市就“每天在校體育活動(dòng)時(shí)間”的問(wèn)題隨機(jī)抽樣調(diào)查了321名初中學(xué)生.根據(jù)調(diào)查結(jié)果將學(xué)生每天在校體育活動(dòng)時(shí)間t(小時(shí))分成,,,四組,并繪制了統(tǒng)計(jì)圖(部分).
組:組:組:組:
請(qǐng)根據(jù)上述信息解答下列問(wèn)題:
(1)組的人數(shù)是 ;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在 組內(nèi);
(3)若該市約有12840名初中學(xué)生,請(qǐng)你估算其中達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的人數(shù)大約有多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com