【題目】綜合與探究
如圖1所示,直線y=x+c與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A,C.
(1)求拋物線的解析式
(2)點(diǎn)E在拋物線的對(duì)稱軸上,求CE+OE的最小值;
(3)如圖2所示,M是線段OA的上一個(gè)動(dòng)點(diǎn),過點(diǎn)M垂直于x軸的直線與直線AC和拋物線分別交于點(diǎn)P、N
①若以C,P,N為頂點(diǎn)的三角形與△APM相似,則△CPN的面積為 ;
②若點(diǎn)P恰好是線段MN的中點(diǎn),點(diǎn)F是直線AC上一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)D,使以點(diǎn)D,F(xiàn),P,M為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(﹣,)
【答案】(1)y=﹣x2﹣3x+4;(2)CE+OE的最小值為5;(3)或4;存在,當(dāng)PF=FM時(shí),點(diǎn)D在MN垂直平分線上,則D();當(dāng)PM=PF時(shí),由菱形性質(zhì)點(diǎn)D坐標(biāo)為(﹣1+,)(﹣1﹣,﹣);當(dāng)MP=MF時(shí),M、D關(guān)于直線y=﹣x+4對(duì)稱,點(diǎn)D坐標(biāo)為(﹣4,3).
【解析】
(1)把已知點(diǎn)坐標(biāo)代入解析式;
(2)取點(diǎn)C關(guān)于拋物線的對(duì)稱軸直線l的對(duì)稱點(diǎn)C′,由兩點(diǎn)之間線段最短,最小值可得;
(3)①由已知,注意相似三角形的分類討論.
②設(shè)出M坐標(biāo),求點(diǎn)P坐標(biāo).注意菱形是由等腰三角形以底邊所在直線為對(duì)稱軸對(duì)稱得到的.本題即為研究△CPN為等腰三角形的情況.
解:(1)將A(﹣4,0)代入y=x+c
∴c=4
將A(﹣4,0)和c=4代入y=﹣x2+bx+c
∴b=﹣3
∴拋物線解析式為y=﹣x2﹣3x+4
(2)做點(diǎn)C關(guān)于拋物線的對(duì)稱軸直線l的對(duì)稱點(diǎn)C′,連OC′,交直線l于點(diǎn)E.
連CE,此時(shí)CE+OE的值最小.
∵拋物線對(duì)稱軸位置線x=﹣
∴CC′=3
由勾股定理OC′=5
∴CE+OE的最小值為5
(3)①當(dāng)△CNP∽△AMP時(shí),
∠CNP=90°,則NC關(guān)于拋物線對(duì)稱軸對(duì)稱
∴NC=NP=3
∴△CPN的面積為
當(dāng)△CNP∽△MAP時(shí)
由已知△NCP為等腰直角三角形,∠NCP=90°
過點(diǎn)C作CE⊥MN于點(diǎn)E,設(shè)點(diǎn)M坐標(biāo)為(a,0)
∴EP=EC=﹣a,
則N為(a,﹣a2﹣3a+4),MP=﹣a2﹣3a+4﹣(﹣2a)=﹣a2﹣a+4
∴P(a,﹣a2﹣a+4)
代入y=x+4
解得a=﹣2
∴△CPN的面積為4
故答案為:或4
②存在
設(shè)M坐標(biāo)為(a,0)
則N為(a,﹣a2﹣3a+4)
則P點(diǎn)坐標(biāo)為(a,)
把點(diǎn)P坐標(biāo)代入y=﹣x+4
解得a1=﹣4(舍去),a2=﹣1
當(dāng)PF=FM時(shí),點(diǎn)D在MN垂直平分線上,則D(,)
當(dāng)PM=PF時(shí),由菱形性質(zhì)點(diǎn)D坐標(biāo)為(﹣1+,)(﹣1﹣,﹣)
當(dāng)MP=MF時(shí),M、D關(guān)于直線y=﹣x+4對(duì)稱,點(diǎn)D坐標(biāo)為(﹣4,3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑延長線上的一點(diǎn),與相切,切點(diǎn)為,點(diǎn)是上一點(diǎn),連接.已知.下列結(jié)論:
與相切;四邊形是菱形;;.
其中正確的個(gè)數(shù)為( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ABD,還應(yīng)補(bǔ)充一個(gè)條件,才能推出△ABC≌△ABD.補(bǔ)充下列其中一個(gè)條件后,不一定能推出△ABC≌△ABD的是( 。
A. BC=BD B. AC=AD C. ∠ACB=∠ADB D. ∠CAB=∠DAB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形置于平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸上,點(diǎn)在上,將矩形沿折疊壓平,使點(diǎn)落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).若拋物線(且為常數(shù))的頂點(diǎn)落在的內(nèi)部,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A1,點(diǎn)B1、C1分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫出平移后的△A1B1C1(不寫畫法);
(2)將△A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C1(不寫畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AE⊥BD于E,若∠OAE=24°,則∠BAE的度數(shù)是( )
A. 24° B. 33° C. 42° D. 43°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com