【題目】如圖,二次函數(shù)的圖像與軸交于,兩點,其中點,點都在拋物線上,為拋物線的頂點.

1)求拋物線的函數(shù)解析式;

2)求直線的解析式;

3)求的面積.

【答案】1;(2;(3.

【解析】

1A-1,0),C0,5),D18)代入y=ax2+bx+c得到關于a、b、c的方程組,解方程組求出ab、c的值即可得到二次函數(shù)解析式;
2)先把拋物線解析式配成頂點式,則可確定M點坐標為(2,9),軟件利用待定系數(shù)法確定直線CM的解析式;
3)先確定直線CMx軸的交點D的坐標和拋物線與x軸的交點B的坐標,然后利用SMCB=SMBE-SCBE進行計算.

1)根據(jù)題意得,

解得,

所以二次函數(shù)解析式為

2)如圖:

,

點坐標為,

設直線的解析式為,

代入得,

解得

所以直線的解析式為;

3)把代入

解得,

點坐標為,

代入,

解得,,

所以.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+c經(jīng)過A(﹣6,0)、B(2,0)、C(0,6)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與AD重合),過點Py軸的垂線,垂足為點E,連接AE

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

(2)如果點P的坐標為(x,y),PAE的面積為S,求Sx之間的函數(shù)關系式,直接寫出自變量x的取值范圍,并求出S的最大值;

(3)過點P(﹣3,m)作x軸的垂線,垂足為點F,連接EF,把PEF沿直線EF折疊,點P的對應點為點P,求出P的坐標.(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,ADC=ACB=90°,EAB的中點,

(1)求證:AC2=ABAD;

(2)求證:△AFD∽△CFE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,ABBC,點EBC的中點,且EF//AB,AE、BF交于點O,連接EF,OC

1)求證:四邊形ABEF是菱形;

2)若BC8,∠ABC60°,求OEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于點A、B(點A位于點B的左側),與y軸交于點C,CDx軸交拋物線于點D,M為拋物線的頂點.

1)求點AB、C的坐標;

2)設動點N(-2,n),求使MNBN的值最小時n的值;

3P是拋物線上一點,請你探究:是否存在點P,使以P、AB為頂點的三角形與△ABD相似,(△PAB與△ABD不重合)?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某人為了測量小山頂上的塔ED的高他在山下的點A處測得塔尖點D的仰角為45°,再沿AC方向前進60 m到達山腳點B,測得塔尖點D的仰角為60°,塔底點E的仰角為30°,求塔ED的高度.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù),為常數(shù)).

1)當,時,求二次函數(shù)的最小值;

2)當時,若在函數(shù)值的情況下,只有一個自變量的值與其對應,求此時二次函數(shù)的解析式;

3)當時,若在自變量的值滿足的情況下,與其對應的函數(shù)值的最小值為21,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)、B(3,0).

(1)求b、c的值;

(2)如圖1直線y=kx+1(k>0)與拋物線第一象限的部分交于D點,交y軸于F點,交線段BC于E點.求的最大值;

(3)如圖2,拋物線的對稱軸與拋物線交于點P、與直線BC相交于點M,連接PB.問在直線BC下方的拋物線上是否存在點Q,使得△QMB與△PMB的面積相等?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2ax+2

1)求拋物線的對稱軸(用含a的代數(shù)式表示)

2)若點A(﹣1,3)向右平移4個長度單位,得到點B

①若拋物線經(jīng)過點B,求a的值;

②拋物線與線段AB恰有一個交點,結合函數(shù)圖象,直接寫出a的取值范圍.

查看答案和解析>>

同步練習冊答案