【題目】某區(qū)教研部門對本區(qū)初二年級的學(xué)生進(jìn)行了一次隨機(jī)抽樣問卷調(diào)查,其中有這樣一個問題:老師在課堂上放手讓學(xué)生提問和表達(dá)( )

A.從不 B.很少 C.有時 D.常常 E.總是

答題的學(xué)生在這五個選項(xiàng)中只能選擇一項(xiàng).下面是根據(jù)學(xué)生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)該區(qū)共有 名初二年級的學(xué)生參加了本次問卷調(diào)查;

(2)請把這幅條形統(tǒng)計圖補(bǔ)充完整;

(3)在扇形統(tǒng)計圖中,“總是”的圓心角為 .(精確到度)

【答案】(1)3200(2)答案見解析(3)151°

【解析】試題分析:(1)用從不的人數(shù)除以從不人數(shù)所占的百分比即可得總?cè)藬?shù);(2)用總?cè)藬?shù)減去從不很少、常常、總是的人數(shù)即可得有時的人數(shù),在條形統(tǒng)計圖上畫出即可;(3)用總是的人數(shù)除以總?cè)藬?shù)即可得總是所占的百分比.

試題解析:(196÷3%=3200(人);(2有時的人數(shù)為3200-96-320-736-1344=704(人),圖見下;(3×100%=42%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(8)6-(13)(6);

5(3a2bab2+c)4(2cab23a2b)

3x2 [7x - 2(4x + 2) +2x2]x2

⑥-14÷3×[3(3)2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊挖掘30m時,用了3h;②挖掘6h時甲隊比乙隊多挖了10m;③乙隊的挖掘速度總是小于甲隊;④開挖后甲、乙兩隊所挖河渠長度相等時,x=4.其中一定正確的有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的證明過程,指出其錯誤.(在錯誤部分下方劃線)已知ABC,求證:∠A+B+C180°

1)證明:過ADEBC,且使∠1=∠C

DEBC(作圖)

∴∠2=∠B(內(nèi)錯角相等兩直線平行)

∵∠1=∠C(作圖)

∴∠B+C+3=∠2+1+3(等量代換)

2+l+3180°(周角的定義)

即∠BAC+B+C180°(等量代換)

2)類比探究:請同學(xué)們參考圖2,模仿(1)的解決過程,避免(1)中的錯誤,試說明求證:∠A+B+C180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點(diǎn),以BD為直徑的O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過平移后得到△A1B1C1,點(diǎn)P的對應(yīng)點(diǎn)為P1(a+6,b-2).

(1)直接寫出點(diǎn)C1的坐標(biāo);

(2)在圖中畫出△A1B1C1;

(3)求△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB中,∠ABO90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Bx軸正半軸上,若雙曲線yx0)與△OAB的邊AO、AB分別交于點(diǎn)C、D,點(diǎn)CAO的中點(diǎn),連接OD、CD.若SOBD3,則SOCD為( 。

A.3B.4C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:,

1)請找出圖中一對全等的三角形,并說明理由;

2)若,,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案