【題目】O是平行四邊形ABCD的對稱中心,ADABE、F分別是AB邊上的點EFAB;GH分別是BC邊上的點,GHBC;S1,S2分別表示EOFGOH的面積S1,S2之間的等量關(guān)系是______________

【答案】2S1=3S2

【解析】

過點O分別作OMBC,垂足為M,作ONAB,垂足為N,根據(jù)點O是平行四邊形ABCD的對稱中心以及平行四邊形的面積公式可得ABON=BCOM,再根據(jù)S1=EFON,S2=GHOM,EF=AB,GH=BC,則可得到答案.

過點O分別作OMBC,垂足為M,作ONAB,垂足為N,

∵點O是平行四邊形ABCD的對稱中心,

S平行四邊形ABCD=AB2ON, S平行四邊形ABCD=BC2OM,

ABON=BCOM,

S1=EFON,S2=GHOM,EF=AB,GH=BC,

S1=ABON,S2=BCOM,

2S1=3S2,

故答案為:2S1=3S2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,Rt△ABC中,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的長;

(2)如圖2,已知△ABC,若AB邊上存在一點M,若AC邊上存在一點N,使MB=MN,且△AMN∽△ABC,請利用沒有刻度的直尺和圓規(guī),作出符合條件的線段MN(注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進行標注).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=AC,CD是△ABC的角平分線,若在邊BC上截取CE=CB,連接DE,則圖中等腰三角形有(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi)由極點、極軸和極徑組成的坐標系叫做極坐標系.如圖,在平面上取定一點O稱為極點;從點O出發(fā)引一條射線Ox稱為極軸;線段OP的長度稱為極徑.點P的極坐標就可以用線段OP的長度以及從Ox轉(zhuǎn)動到OP的角度(規(guī)定逆時針方向轉(zhuǎn)動角度為正)來確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點P關(guān)于點O成中心對稱的點Q的極坐標表示不正確的是(

A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=ACAD=AE,,若要得到△ABD≌△ACE,必須添加一個條件,則下列所添條件不恰當(dāng)?shù)氖?( ).

A. BD=CEB. ∠ABD=∠ACEC. ∠BAD=∠CAED. ∠BAC=∠DAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二維碼已經(jīng)給我們的生活帶來了很大方便,它是由大小相同的黑白兩色的小正方形(如圖1C)按某種規(guī)律組成的一個大正方形,現(xiàn)有25×25格式的正方形如圖1,角上是三個7×7A型大黑白相間正方形,中間右下一個5×5B型黑白相間正方形,除這4個正方形外,若其他的小正方形白色塊數(shù)y與黑色塊數(shù)x正好滿足如圖2所示的函數(shù)圖象,則該25×25格式的二維碼共有多少塊黑色的C型小正方形(  )

A. 153 B. 218 C. 100 D. 216

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側(cè),其圖象與x軸交于點A(﹣1,0)與點C(x2,0),且與y軸交于點B(0,﹣2),小強得到以下結(jié)論:0a2;﹣1b0;c=﹣1;當(dāng)|a|=|b|時x2﹣1;以上結(jié)論中正確結(jié)論的序號為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在正方形ABCD中,點E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點G,則下列結(jié)論不正確的是( )

ABE=AF B∠DAF=∠BEC C∠AFB+∠BEC=90° DAG⊥BE

查看答案和解析>>

同步練習(xí)冊答案