【題目】某政府工作報告中強調,2019年著重推進鄉(xiāng)村振興戰(zhàn)略,做優(yōu)做響湘蓮等特色農(nóng)產(chǎn)品品牌.小亮調查了一家湘潭特產(chǎn)店兩種湘蓮禮盒一個月的銷售情況,A種湘蓮禮盒進價72元/盒,售價120元/盒,B種湘蓮禮盒進價40元/盒,售價80元/盒,這兩種湘蓮禮盒這個月平均每天的銷售總額為2800元,平均每天的總利潤為1280元.
(1)求該店平均每天銷售這兩種湘蓮禮盒各多少盒?
(2)小亮調査發(fā)現(xiàn),種湘蓮禮盒售價每降3元可多賣1盒.若種湘蓮禮盒的售價和銷量不變,當種湘蓮禮盒降價多少元/盒時,這兩種湘蓮禮盒平均每天的總利潤最大,最大是多少元?
【答案】(1)該店平均每天銷售禮盒10盒,種禮盒為20盒;(2)當種湘蓮禮盒降價9元/盒時,這兩種湘蓮禮盒平均每天的總利潤最大,最大是1307元.
【解析】
(1)根據(jù)題意,可設平均每天銷售禮盒盒,種禮盒為盒,列二元一次方程組即可解題
(2)根據(jù)題意,可設種禮盒降價元/盒,則種禮盒的銷售量為:()盒,再列出關系式即可.
解:(1)根據(jù)題意,可設平均每天銷售禮盒盒,種禮盒為盒,
則有,解得
故該店平均每天銷售禮盒10盒,種禮盒為20盒.
(2)設A種湘蓮禮盒降價元/盒,利潤為元,依題意
總利潤
化簡得
∵
∴當時,取得最大值為1307,
故當種湘蓮禮盒降價9元/盒時,這兩種湘蓮禮盒平均每天的總利潤最大,最大是1307元.
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,點E、F分別是AB、AD邊上一點,∠DFC=2∠FCE.
(1)如圖1,若四邊形ABCD是正方形,∠DFC=60°,BE=4,則AF= .
(2)如圖2,若四邊形ABCD是菱形,∠A=120°,∠DFC=90°,BE=4,求的值.
(3)如圖3,若四邊形ABCD是矩形,點E是AB的中點,CE=12,CF=13,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚傳統(tǒng)文化,某校開展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動.為了解七、八年級學生(七、八年級各有600名學生)的閱讀效果,該校舉行了經(jīng)典文化知識競賽.現(xiàn)從兩個年級各隨機抽取20名學生的競賽成績(百分制)進行分析,過程如下:
收集數(shù)據(jù):
七年級:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級 | 0 | 1 | 0 | a | 7 | 1 |
八年級 | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級 | 78 | 75 | |
八年級 | 78 | 80.5 |
應用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計該校七、八兩個年級學生在本次競賽中成績在90分以上的共有多少人?
(3)你認為哪個年級的學生對經(jīng)典文化知識掌握的總體水平較好,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=2,點E是邊BC的中點,P為AB上一點,連接PE,過點E作PE的垂線交射線AD于點Q,連接PQ,設AP的長為t.
(1)用含t的代數(shù)式表示AQ的長;
(2)若△PEQ的面積等于10,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線經(jīng)過原點,頂點為,且與直線相交于兩點.
(1)求拋物線的解析式;
(2)求、兩點的坐標;
(3)若點為軸上的一個動點,過點作軸與拋物線交于點,則是否存在以為頂點的三角形與相似?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:
來源: 題型:【題目】已知二次函數(shù)的圖象經(jīng)過三點(1,0),(-6,0)(0,-3).
(1)求該二次函數(shù)的解析式.
(2)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內交于點A(),落在兩個相鄰的正整數(shù)之間,請求出這兩個相鄰的正整數(shù).
(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內的交點為B,點B的橫坐標為m,且滿足3<m<4,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E,B.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,線段PD最長?并求出最大值;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A,E,N,M為頂點的四邊形是平行四邊形,求點M的坐標.(請直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內接于圓,對角線AC與BD相交于點E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC .
(1)若∠DFC=40,求∠CBF的度數(shù).
(2)求證: CD⊥DF .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com