【題目】矩形ABCD中,E、F分別是AD、BC的中點,CE、AF分別交BD于G、H兩點.
求證:
(1)四邊形AFCE是平行四邊形;
(2)證明:EG=FH.
【答案】
(1)
證明:∵四邊形ABCD是矩形,
∴AD//BC,AD=BC,
∵E、F分別是AD、BC的中點,
∴AE= AD,CF= BC,
∴AECF,
∴四邊形AFCE是平行四邊形;
(2)
證明:∵四邊形AFCE是平行四邊形,
∴CE//AF,
∴∠DGE=∠AHD=∠BHF,
∵AB//CD,
∴∠EDG=∠FBH,
在△DEG和△BFH中
,
∴△DEG≌△BFH(AAS),
∴EG=FH.
【解析】(1)根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明即可;
(2)可證明EG和FH所在的△DEG、△BFH全等即可.
【考點精析】本題主要考查了平行四邊形的判定與性質(zhì)和矩形的性質(zhì)的相關(guān)知識點,需要掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某專賣店有A,B兩種商品,已知在打折前,買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元,A,B兩種商品打相同折以后,某人買500件A商品和450件B商品一共比不打折少花1960元,計算打了多少折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對一組數(shù)據(jù):﹣2,1,2,1,下列說法不正確的是( )
A.平均數(shù)是1
B.眾數(shù)是1
C.中位數(shù)是1
D.極差是4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CB,CD分別切⊙O于點B,D,CD交BA的延長線于點E,CO的延長線交⊙O于點G,EF⊥OG于點F.
(1)求證:∠FEB=∠ECF;
(2)若BC=6,DE=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在面積都相等的所有矩形中,當其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設(shè)矩形的相鄰兩邊長分別為x,y.
①求y關(guān)于x的函數(shù)表達式;
②當y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認為圓圓和方方的說法對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副三角尺按如圖的位置擺放(頂點C 與F 重合,邊CA與邊FE疊合,頂點B、C、D在一條直線上).將三角尺DEF繞著點F按順時針方向旋轉(zhuǎn)n°后(0<n<180 ),如果EF∥AB,那么n的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為解決中小學大班額問題,東營市各縣區(qū)今年將改擴建部分中小學,某縣計劃對A、B兩類學校進行改擴建,根據(jù)預算,改擴建2所A類學校和3所B類學校共需資金7800萬元,改擴建3所A類學校和1所B類學校共需資金5400萬元.
(1)改擴建1所A類學校和1所B類學校所需資金分別是多少萬元?
(2)該縣計劃改擴建A、B兩類學校共10所,改擴建資金由國家財政和地方財政共同承擔.若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com