【題目】為解決中小學(xué)大班額問(wèn)題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬(wàn)元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬(wàn)元.
(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬(wàn)元?
(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過(guò)11800萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬(wàn)元和500萬(wàn)元.請(qǐng)問(wèn)共有哪幾種改擴(kuò)建方案?

【答案】
(1)解:設(shè)改擴(kuò)建一所A類和一所B類學(xué)校所需資金分別為x萬(wàn)元和y萬(wàn)元

由題意得 ,解得 ,

答:改擴(kuò)建一所A類學(xué)校和一所B類學(xué)校所需資金分別為1200萬(wàn)元和1800萬(wàn)元.


(2)解:設(shè)今年改擴(kuò)建A類學(xué)校a所,則改擴(kuò)建B類學(xué)校(10﹣a)所,

由題意得: ,解得 ,

∴3≤a≤5,

∵x取整數(shù),

∴x=3,4,5.

即共有3種方案:

方案一:改擴(kuò)建A類學(xué)校3所,B類學(xué)校7所;

方案二:改擴(kuò)建A類學(xué)校4所,B類學(xué)校6所;

方案三:改擴(kuò)建A類學(xué)校5所,B類學(xué)校5所.


【解析】(1)可根據(jù)“改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬(wàn)元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬(wàn)元”,列出方程組求出答案;(2)要根據(jù)“國(guó)家財(cái)政撥付資金不超過(guò)11800萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元”來(lái)列出不等式組,判斷出不同的改造方案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一元一次不等式組的應(yīng)用的相關(guān)知識(shí),掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫(xiě)出問(wèn)題答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,E、F分別是AD、BC的中點(diǎn),CE、AF分別交BD于G、H兩點(diǎn).

求證:
(1)四邊形AFCE是平行四邊形;
(2)證明:EG=FH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:如圖1,⊙O與直線a、b都相切,不論⊙O如何轉(zhuǎn)動(dòng),直線a、b之間的距離始終保持不變(等于⊙O的直徑),我們把具有這一特性的圖形成為“等寬曲線”,圖2是利用圓的這一特性的例子,將等直徑的圓棍放在物體下面,通過(guò)圓棍滾動(dòng),用較小的力既可以推動(dòng)物體前進(jìn),據(jù)說(shuō),古埃及人就是利用這樣的方法將巨石推到金字塔頂?shù)模?拓展應(yīng)用:如圖3所示的弧三角形(也稱為萊洛三角形)也是“等寬曲線”,如圖4,夾在平行線c,d之間的萊洛三角形無(wú)論怎么滾動(dòng),平行線間的距離始終不變,若直線c,d之間的距離等于2cm,則萊洛三角形的周長(zhǎng)為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】青島市某大酒店豪華間實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每間價(jià)格比淡季上漲 .下表是去年該酒店豪華間某兩天的相關(guān)記錄:

淡季

旺季

未入住房間數(shù)

10

0

日總收入(元)

24000

40000


(1)該酒店豪華間有多少間?旺季每間價(jià)格為多少元?
(2)今年旺季來(lái)臨,豪華間的間數(shù)不變.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果豪華間仍舊實(shí)行去年旺季價(jià)格,那么每天都客滿;如果價(jià)格繼續(xù)上漲,那么每增加25元,每天未入住房間數(shù)增加1間.不考慮其他因素,該酒店將豪華間的價(jià)格上漲多少元時(shí),豪華間的日總收入最高?最高日總收入是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y= x﹣ 與x軸交于點(diǎn)B1 , 以O(shè)B1為邊長(zhǎng)作等邊三角形A1OB1 , 過(guò)點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2 , 以A1B2為邊長(zhǎng)作等邊三角形A2A1B2 , 過(guò)點(diǎn)A2作A2B3平行于x軸,交直線l于點(diǎn)B3 , 以A2B3為邊長(zhǎng)作等邊三角形A3A2B3 , …,則點(diǎn)A2017的橫坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在點(diǎn)A'處.若∠1=∠2=50°,則∠A'為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017寧夏)在邊長(zhǎng)為2的等邊三角形ABC中,P是BC邊上任意一點(diǎn),過(guò)點(diǎn) P分別作 PM⊥A B,PN⊥AC,M、N分別為垂足.
(1)求證:不論點(diǎn)P在BC邊的何處時(shí)都有PM+PN的長(zhǎng)恰好等于三角形ABC一邊上的高;
(2)當(dāng)BP的長(zhǎng)為何值時(shí),四邊形AMPN的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的解析式為y=﹣ x2+bx+5.
(1)當(dāng)自變量 x≥2時(shí),函數(shù)值y 隨 x的增大而減少,求b 的取值范圍;
(2)如圖,若拋物線的圖象經(jīng)過(guò)點(diǎn)A(2,5),與x 軸交于點(diǎn)C,拋物線的對(duì)稱軸與x 軸交于B.

①求拋物線的解析式;
②在拋物線上是否存在點(diǎn)P,使得∠PAB=∠ABC?若存在,求出點(diǎn)P 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B(4、0)兩點(diǎn),與y軸交于C點(diǎn).

(1)求拋物線的解析式;
(2)T是拋物線對(duì)稱軸上的一點(diǎn),且△ATC是以AC為底的等腰三角形,求點(diǎn)T的坐標(biāo);
(3)M、Q兩點(diǎn)分別從A、B點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度沿x軸同時(shí)出發(fā)相向而行,當(dāng)點(diǎn)M到原點(diǎn)時(shí),點(diǎn)Q立刻掉頭并以每秒 個(gè)單位長(zhǎng)度的速度向點(diǎn)B方向移動(dòng),當(dāng)點(diǎn)M到達(dá)拋物線的對(duì)稱軸時(shí),兩點(diǎn)停止運(yùn)動(dòng),過(guò)點(diǎn)M的直線l⊥x軸交AC或BC于點(diǎn)P.求點(diǎn)M的運(yùn)動(dòng)時(shí)間t與△APQ面積S的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案