如圖,在以O(shè)為圓心的兩個同心圓中,大圓的弦AB與小圓相切于C點,AB=12cm,AO=8cm,則OC長為(    )cm
A.5B.4C.D.
D

試題分析:O為圓心的兩個同心圓的圓心,大圓的弦AB與小圓相切于C點,那么C點是AB的中點,即AC=BC==6;并且OC⊥AB,在中,由勾股定理得,所以;AO=8cm,所以,所以O(shè)C=
點評:本題考查弦心距,勾股定理,解答本題要求考生掌握弦心距的概念和性質(zhì),熟悉勾股定理的內(nèi)容
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的半徑為2,點O到直線的距離為3,點P是直線上的一個動點,PB切⊙O于點B,則PB的最小值是(  )
A.B.C. 3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點A、B、C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.

(1)判斷AP與⊙O的位置關(guān)系,并說明理由;
(2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,內(nèi)接于,的直徑,,點D是弧BAC上一點,則=      °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.

(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使BF=OB,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O中,直徑AB⊥弦CD于E,若AB=26,CD=24,則tan∠OCE=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

母線長為4,底面圓的直徑為2的圓錐的側(cè)面積是       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,小明從半徑為5的圓形紙片中剪下40%圓周的 一個扇形,然后利用剪下的扇形制作成一個圓錐形玩具紙帽(接縫處不重疊),那么這個圓錐的高為
A.3B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓的半徑分別是4和9,圓心距為6,則這兩圓的位置關(guān)系是(  )
A.相交B.外切C.外離D.內(nèi)含

查看答案和解析>>

同步練習(xí)冊答案