【題目】已知點(diǎn)P1(a , 3)與P2(5,-3)關(guān)于原點(diǎn)對稱,則a= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點(diǎn)E,使AE=AC;延長CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx以下各點(diǎn)不可能成為二次函數(shù)頂點(diǎn)的是( 。
A. (﹣2,4) B. (﹣2,﹣4) C. (﹣1,﹣1) D. (1,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=100°,E,F(xiàn)分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC的度數(shù)為( 。
A. 50° B. 55° C. 60° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省聊城市第19題)如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點(diǎn)C1的坐標(biāo)為(4,0),寫出頂點(diǎn)A1,B1的坐標(biāo);
(2)若△ABC和△A1B2C2關(guān)于原點(diǎn)O成中心對稱圖形,寫出△A1B2C2的各頂點(diǎn)的坐標(biāo);
(3)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到△A2B3C3,寫出△A2B3C3的各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,OC是∠AOD的平分線,OE是∠BOD的平分線.
(1)若∠AOB=120°,則∠COE是多少度?
(2)若∠EOC=65°,∠DOC=25°,則∠BOE是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:
(1)請你根據(jù)圖中A、B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù)
A: ___________ B: _____________ ;
(2)觀察數(shù)軸,與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是:_____________ ;
(3)若將數(shù)軸折疊,使得A點(diǎn)與-3表示的點(diǎn)重合,則B點(diǎn)與數(shù)_ _表示的點(diǎn)重合;
(4)若數(shù)軸上M、N兩點(diǎn)之間的距離為1004(M在N的左側(cè)),且M、N兩點(diǎn)經(jīng)過(3)中折疊后互相重合,則M、N兩點(diǎn)表示的數(shù)分別是: M: _______ N: _______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A(﹣1,0),點(diǎn)B(0,﹣2),AD與y軸交于點(diǎn)E,且E為AD的中點(diǎn),雙曲線y=經(jīng)過C,D兩點(diǎn)且D(a,4)、C(2,b).
(1)求a、b、k的值;
(2)如圖2,線段CD能通過旋轉(zhuǎn)一定角度后點(diǎn)C、D的對應(yīng)點(diǎn)C′、D′還能落在y=的圖象上嗎?如果能,寫出你是如何旋轉(zhuǎn)的,如果不能,請說明理由;
(3)如圖3,點(diǎn)P在雙曲線y=上,點(diǎn)Q在y軸上,若以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com