【題目】沿河岸有,,三個港口,甲、乙兩船同時分別從,港口出發(fā),勻速駛向港,最終到達.設甲、乙兩船行駛后,與港的距離分別為,,的函數(shù)關系如圖所示.則:

①從港到港全程為______;

②如果兩船相距小于能夠相互望見,那么在甲船到達港前甲、乙兩船可以相互望見時,的取值范圍是______.

【答案】120

【解析】

①結合圖形中甲的圖象可知,AC兩港距離;

②由速度=路程÷時間,可知甲、乙兩船的速度,由行駛過程中的路程變化可得出甲、乙兩船可以相互望見時,x的取值范圍.

解:①從A港到C港全程為20+100=120km;

②甲船的速度為20÷0.5=40km/h,乙船的速度為1004=25km/h

甲、乙兩船第一次相距10km的時間為(20-10)÷(40-25)=(小時),

甲、乙兩船第二次相距10km的時間為(20+10)÷(40-25)=2(小時),

即在甲船到達港前甲、乙兩船可以相互望見時,x的取值范圍是<x<2.

故答案為:①120;②.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學習了勾股定理后,數(shù)學活動興趣小組的小娟和小燕對離教室不遠的一個直角三角形花臺斜邊上的高進行了探究:兩人在直角邊上距直角頂點米遠的點處同時開始測量,點為終點.小娟沿的路徑測得所經(jīng)過的路程是米,小燕沿的路徑測得所經(jīng)過的路程也是米,這時小娟說我能求出這個直角三角形的花臺斜邊上的高了,小燕說我也知道怎么求出這個直角三角形的花臺斜邊上的高了.親愛的同學們你能求出這個直角三角形的花臺斜邊上的高嗎?若能,請你求出來:若不能,請說明理由?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在2016CCTV英語風采大賽中,婁底市參賽選手表現(xiàn)突出,成績均不低于60分.為了更好地了解婁底賽區(qū)的成績分布情況,隨機抽取利了其中200名學生的成績成績x取整數(shù),總分100分作為樣本進行了整理,得到如圖的兩幅不完整的統(tǒng)計圖表:

根據(jù)所給信息,解答下列問題:

1在表中的頻數(shù)分布表中,m= ,n=

成績

頻數(shù)

頻率

60≤x<70

60

0.30

70≤x<80

m

0.40

80≤x<90

40

n

90≤x≤100

20

0.10

2請補全圖中的頻數(shù)分布直方圖.

3按規(guī)定,成績在80分以上包括80分的選手進入決賽.若婁底市共有4000人參數(shù),請估計約有多少人進入決賽?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,

(1)求證:△ACE≌△BCD;

(2)若DE=13,BD=12,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,小紅到美麗的世界地質公園湖光巖參加社會實踐活動,在景點P處測得景點B位于南偏東45°方向;然后沿北偏東60°方向走100到達景點A,此時測得景點B正好位于景點A的正南方向,求景點AB之間的距離.(結果精確到0.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙OAC于點D,DE⊥BC,垂足為E

1)求證:DE⊙O的切線;

2)若DG⊥AB,垂足為點F,交⊙O于點G,∠A=35°,⊙O半徑為5,求劣弧DG的長.(結果保留π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別平分的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是規(guī)格為8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標系,使A點坐標為(-2,4),B點坐標為(-4,2);

(2)(1)的前提下,在第二象限內的格點上找一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點的坐標是;

(3)((2)中△ABC的周長(結果保留根號);

(4)畫出((2)中ABC關于y軸對稱的A'B'C'.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點F,點EBD上,

(1)求證:∠BAE=CAD;

(2)求證:ABE∽△ACD.

查看答案和解析>>

同步練習冊答案