【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹枝點(diǎn)G處(點(diǎn)G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線在手中的點(diǎn)A在同一條直線上,點(diǎn)A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.

(1)求風(fēng)箏距地面的高度GF;

(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風(fēng)箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

【答案】(1)10.4(米) (2)能觸到掛在樹上的風(fēng)箏

【解析】

試題分析:(1)過A作APGF于點(diǎn)P.在RtPAG中利用三角函數(shù)求得GP的長,從而求得GF的長。

(2)在RtMNF中,利用勾股定理求得NF的長度,NF的長加上身高再加上竹竿長,與GF比較大小即可。 

解:(1)過A作APGF于點(diǎn)P,

則AP=BF=12,AB=PF=1.4,GAP=37°,

在RtPAG中,,

GP=APtan37°≈12×0.75=9(米)。

GF=9+1.4≈10.4(米)。

(2)由題意可知MN=5,MF=3,

在直角MNF中,。

10.4﹣5﹣1.65=3.75<4,能觸到掛在樹上的風(fēng)箏。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:如圖1,在中和中,,連接于點(diǎn).求證:.

小明經(jīng)探究發(fā)現(xiàn),過點(diǎn)作,交于點(diǎn)(如圖2),從而可證,使問題得到解決.

1)請你按照小明單獨(dú)探究思路,完成他的證明過程;

參考小明思考問題的方法,解決下面的問題:

2)如圖3,在中,分別為、的中線,連接并延長交于點(diǎn),是否存在與相等的線段?若存在,請找出并證明;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過A(﹣2,﹣1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.

(1)求該一次函數(shù)的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;b24ac<0;4a+c>2b;(a+c)2>b2x(ax+b)ab其中正確結(jié)論的是___.

A. ①②⑤ B. ②③④ C. ①③⑤ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級學(xué)生乘車去參加社會實(shí)踐話動,若每輛客車乘50人,還有12人不能上車;若每輛客車乘55人,則最后一輛空了8個座位,求該校租了多少輛客車?七年級學(xué)生多少人?

根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:

小明:50x    ;小紅:

(其中表示運(yùn)算符號,  表示數(shù)字)

小明所列方程中x表示的意義是:______;小紅所列方程中y表示的意義是:______

請你把小明或小紅所列方程補(bǔ)充完整,并相應(yīng)解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級組織知識競賽,共設(shè)20道選擇題,各題分值相同,每題必答.右表記錄了5個參賽學(xué)生的得分情況.問:

參賽者

答對題數(shù)

答錯題數(shù)

得分

A

20

0

100

B

19

1

94

C

18

2

88

D

14

6

64

E

10

10

40

1)答對一題得   分,答錯一題得   分;

2)有一同學(xué)說:同學(xué)甲得了70分,同學(xué)乙得了90分,你認(rèn)為誰的成績是準(zhǔn)確的?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠AOB140°,OCOMON是∠AOB內(nèi)的射線.

1)如圖1所示,若OM平分∠BOC,ON平分∠AOC,求∠MON的度數(shù):

2)如圖2所示,OD也是∠AOB內(nèi)的射線,∠COD15°ON平分∠AODOM平分∠BOC.當(dāng)∠COD繞點(diǎn)O在∠AOB內(nèi)旋轉(zhuǎn)時,∠MON的位置也會變化但大小保持不變,請求出∠MON的大;

3)在(2)的條件下,以∠AOC20°為起始位置(如圖3),當(dāng)∠COD在∠AOB內(nèi)繞點(diǎn)O以每秒的速度逆時針旋轉(zhuǎn)t秒,若∠AON:∠BOM1912,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(23),則C點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中點(diǎn)A到點(diǎn)B的距離為3,點(diǎn)C到點(diǎn)B的距離為7,如圖所示:設(shè)點(diǎn)A,B,C所對應(yīng)的數(shù)的和是m.

1)若以C為原點(diǎn),m的值是_______;

2)若原點(diǎn)0在圖中數(shù)軸上,且點(diǎn)C到原點(diǎn)0的距離為4,m的值;

3)動點(diǎn)PA點(diǎn)出發(fā),以每秒2個單位長度的速度向終點(diǎn)C移動,動點(diǎn)Q同時從B點(diǎn)出發(fā),以每秒1個單位的速度向終點(diǎn)C移動,當(dāng)幾秒后,P、Q兩點(diǎn)間的距離為2?(直接寫出答案即可)

查看答案和解析>>

同步練習(xí)冊答案