【題目】如圖,在矩形中,=3,=5,是上一點,連結(jié),將沿翻折,使點的對應點落在邊上,則△的面積為__________.
【答案】
【解析】
根據(jù)矩形的性質(zhì)得到∠A=∠B=∠D=90°,CD=AB=3,BC=AD=5,根據(jù)折疊的性質(zhì)得到CF=CB=5,EF=BE,根據(jù)勾股定理得到DF==4,AE=,于是得到結(jié)論.
∵在矩形ABCD中,AB=3,AD=5,
∴∠A=∠B=∠D=90°,CD=AB=3,BC=AD=5,
∵將△BCE沿CE翻折,使點B的對應點F落在邊AD上,
∴CF=CB=5,EF=BE,
∴DF==4,
∴AF=AD﹣DF=5﹣4=1,
∵EF2=AE2+AF2,
∴(3﹣AE)2=AE2+12,
解得:AE=,
∴△AEF的面積=AEAF=×1=
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】圖1是由七根連桿鏈接而成的機械裝置,圖2是其示意圖.已知O,P兩點固定,連桿PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P兩點間距與OQ長度相等.當OQ繞點O轉(zhuǎn)動時,點A,B,C的位置隨之改變,點B恰好在線段MN上來回運動.當點B運動至點M或N時,點A,C重合,點P,Q,A,B在同一直線上(如圖3).
(1)點P到MN的距離為_____cm.
(2)當點P,O,A在同一直線上時,點Q到MN的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織了一次比賽,甲、乙兩隊各有5人參加比賽,兩隊每人的比賽成績(單位:分)如下:
甲隊:7,8,9,6,10
乙隊:10,9,5,8,8
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差為S2甲=2,則成績波動較大的是 隊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+6的圖像開口向下,與x軸交于點A(-6,0)和點B(2,0),與y軸交于點C,點P是該函數(shù)圖像上的一個動點(不與點C重合)
(1) 求二次函數(shù)的關系式;
(2)如圖1當點P是該函數(shù)圖像上一個動點且在線段的上方,若△PCA的面積為12,求點P的坐標;
(3)如圖2,該函數(shù)圖像的頂點為D,在該函數(shù)圖像上是否存在點E,使得∠EAB=2∠DAC,若存在請直接寫出點E的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車沿同一條道路從地出發(fā)向1200外的地輸送緊急物資,甲在途中休息了3小時,休息前后的速度不同,最后兩車同時到達地,如圖甲、乙兩車到地的距離(千米)與乙車行駛時間(小時)之間的函數(shù)圖象.
(1)甲車休息前的行駛速度為 千米/時,乙車的速度為 千米/時;
(2)當9≤≤15,求甲車的行駛路程與之間的函數(shù)關系式;
(3)直接寫出甲出發(fā)多長時間與乙在途中相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.
(1)問:今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】年中國“兩會時間”月日正式開啟,特殊時期召開的中國兩會備受世界矚目.某校為讓學生進一步了解年“兩會”熱點,計劃開展關于兩會的宣講活動,開展活動之前,教務處隨機抽取若干名學生,對“你最想聽的宣講內(nèi)容”進行了調(diào)查,有.民生改善、.國家治理、.生態(tài)文明建設、.法治保障四項宣講內(nèi)容,經(jīng)統(tǒng)計,被調(diào)查學生按學校要求,并結(jié)合自身的興趣,每人從這四項宣講內(nèi)容中選擇一項現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
結(jié)合圖中信息解答下列問題:
(1)請將兩幅統(tǒng)計圖補充完整,所抽取學生最想聽的宣講內(nèi)容的眾數(shù)是_____;
(2)在這次調(diào)查中,哪項宣講內(nèi)容的選擇人數(shù)少于各項宣講內(nèi)容選擇人數(shù)的平均數(shù)?
(3)若本校一共有名學生,請估計“最想聽國家治理”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】疫情初期,某市出臺《中小學教師志愿輔導工作實施意見》,鼓勵教師參與志愿輔導,該市率先示范,推出名師公益課程,為學生提供線上免費輔導,據(jù)統(tǒng)計,第一批公益課受益學生萬人次,第三批公益課受益人數(shù)萬人次.
(1)如果第二批,第三批公益課受益學生人次的增長率相同,求這個增長率;
(2)按照這個增長率,預計第四批公益課受益學生將達到多少萬人次?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com