反比例函數(shù)y=數(shù)學(xué)公式的圖象是雙曲線,在每一個(gè)象限內(nèi),y隨x的增大而減小,若點(diǎn)A(-3,y1),B(-1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關(guān)系為________.(用“<”連接)

y2<y1<y3
分析:先根據(jù)反比例函數(shù)的增減性判斷出2-m的符號(hào),再根據(jù)反比例函數(shù)的性質(zhì)判斷出此函數(shù)圖象所在的象限,由各點(diǎn)橫坐標(biāo)的值進(jìn)行判斷即可.
解答:∵反比例函數(shù)y=的圖象是雙曲線,在每一個(gè)象限內(nèi),y隨x的增大而減小,
∴2-m>0,
∴此函數(shù)的圖象在一、三象限,
∵-3<-1<0,
∴0>y1>y2,
∵2>0,
∴y3>0,
∴y2<y1<y3
故答案為:y2<y1<y3
點(diǎn)評(píng):本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),熟知反比例函數(shù)的增減性是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•邯鄲一模)如圖,在直角坐標(biāo)系中,正方形OABC是由四個(gè)邊長(zhǎng)為1的小正方形組成的,反比例函數(shù)y1=
k1
x
(x>0)
過(guò)正方形OABC的中心E,反比例函數(shù)y2=
k2
x
(x>0)
過(guò)AB的中點(diǎn)D,兩個(gè)函數(shù)分別交BC于點(diǎn)N,M,有下列四個(gè)結(jié)論:
①雙曲線y1的解析式為y1=
1
x
(x>0)
;
②兩個(gè)函數(shù)圖象在第一象限內(nèi)一定會(huì)有交點(diǎn);
③MC=2NC;
④反比例函數(shù)y2的圖象可以是看成是由反比例函數(shù)y1的圖象向上平移一個(gè)單位得到
其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,反比例函數(shù)y1的圖象與一次函數(shù)y2的圖象交于A,B兩點(diǎn),y2的圖象與x軸交于點(diǎn)C,過(guò)A作AD⊥x軸于D,若OA=
5
,AD=
1
2
OD,點(diǎn)B的橫坐標(biāo)為
1
2

(1)求一次函數(shù)的解析式及△AOB的面積.
(2)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y1=-
1
3
x2和反比例函數(shù)y2的圖象有一個(gè)交點(diǎn)是A(
a
,-1).
(1)求函數(shù)y2的解析式;
(2)在同一直角坐標(biāo)系中,畫出函數(shù)y1和y2的圖象草圖;
(3)借助圖象回答:當(dāng)自變量x在什么范圍內(nèi)取值時(shí),對(duì)于x的同一個(gè)值,都有y1<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第5章《反比例函數(shù)》?碱}集(12):5.2 反比例函數(shù)的圖象與性質(zhì)(解析版) 題型:解答題

如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)求方程kx+b-=0的解(請(qǐng)直接寫出答案);
(4)求不等式kx+b-<0的解集(請(qǐng)直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第5章《反比例函數(shù)》中考題集(08):5.2 反比例函數(shù)的圖象與性質(zhì)(解析版) 題型:選擇題

若點(diǎn)(3,4)是反比例函數(shù)y=的圖象上一點(diǎn),則此函數(shù)圖象必經(jīng)過(guò)點(diǎn)( )
A.(2,6)
B.(-2.6)
C.(4,-3)
D.(3,-4)

查看答案和解析>>

同步練習(xí)冊(cè)答案