【題目】(1)如圖1,已知:在ABC中,BAC=90°,AB=AC,直線m經過點A,BD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖2,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m上,并且有BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

圖1 圖2

【答案】(1)、證明過程見解析;(2)、成立;理由見解析.

【解析】

試題分析:(1)、根據BD直線m,CE直線m得出BDA=AEC=90°,然后根據BAC=90°得出DBA=EAC,從而說明ABD和CAE全等,得出BD=AE,AD=CE,從而得出答案;(2)、根據BDA=α得出DBA+BAD=180°α,根據BAC =α得出BAD+EAC=180°α,從而說明DBA EAC,然后得出ABD和CAE全等,從而得出BD=AE,AD=CE,然后得出答案.

試題解析:(1)、BD直線m,CE直線m,垂足分別為D、E ∴∠BDA=AEC=90°

∴∠DBA+BAD=90° ∵∠BAC=90° ∴∠BAD+EAC=90° ∴∠DBA=EAC

ABD與CAE中 ∴△ABD≌△CAE

BD=AE,AD=CE DE=AD+AE=CE+BD

(2)、結論DE=BD+CE成立

ABD中,∵∠BDA=α ∴∠DBA+BAD=180°α ∵∠BAC =α ∴∠BAD+EAC=180°α

∴∠DBA EAC

ABD與CAE中, ∴△ABD≌△CAE BD=AE,AD=CE DE=AD+AE=CE+BD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,點E、F分別在AB、CD上,且AE=CF.

(1)求證:ADE≌△CBF;

(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,拋物線y=+bx+c經過A,B兩點,拋物線的頂點為D.

(1)、求b,c的值;

(2)、點E是直角三角形ABC斜邊AB上一動點(點A、B除外),過點E作x軸的垂線交拋物線于點F,當線段EF的長度最大時,求點E的坐標;

(3)、在(2)的條件下:求以點E、B、F、D為頂點的四邊形的面積;在拋物線上是否存在一點P,使EFP是以EF為直角邊的直角三角形? 若存在,求出所有點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)將三張形狀、大小完全相同的平行四邊形透明紙片分別放在方格紙中,方格紙中的每個小正方形的邊長均為1,并且平行四邊形 紙片的每個頂點與小正方形的頂點重合(如圖、圖、圖).

矩形(正方形)

,

分別在圖、圖、圖中,經過平行四邊形紙片的任意一個頂點畫一條裁剪線,沿此裁剪線將平行四邊形紙片裁成兩部分,并把這兩部分重新拼成符合下列要求的幾何圖形.

要求:

(1)在左邊的平行四邊形紙片中畫一條裁剪線,然后在右邊相對應的方格紙中,按實際大小畫出所拼成的符合要求的幾何圖形.

(2)裁成的兩部分在拼成幾何圖形時要互不重疊且不留空隙.

(3)所畫出的幾何圖形的各頂點必須與小正方形的頂點重合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘漁船位于小島M的北偏東45°方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達位于小島南偏東60°方向的B處。

(1)求漁船從A到B的航行過程中與小島M之間的最小距離(結果用根號表示):

(2)若漁船以20海里/小時的速度從B沿BM方向行駛,求漁船從B到達小島M的航行時間(結果精確到0.1小時)。(參考數(shù)據:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O和直線L相交,圓心到直線L的距離為10cm,則⊙O的半徑可能為( )
A.10cm
B.6cm
C.12cm
D.以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】時光飛逝,小學、中學的學習時光已過去,九年的在校時間大約有16200小時,請將數(shù)16200用科學記數(shù)法表示為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某果園2014年水果產量為100噸,2016年水果產量為144噸,則該果園水果產量的年平均增長率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線與y軸交于C點,與x軸交于A,B兩點(點A在點B左側),且點A的橫坐標為-1.

(1)求a的值;

(2)設拋物線的頂點P關于原點的對稱點為,求點的坐標;

(3)將拋物線在A,B兩點之間的部分(包括A, B兩點),先向下平移3個單位,再向左平移m()個單位,平移后的圖象記為圖象G,若圖象G與直線無交點,求m的取值范圍

查看答案和解析>>

同步練習冊答案