【題目】科技館是少年兒童節(jié)假日游玩的樂(lè)園.如圖所示,圖中點(diǎn)的橫坐標(biāo)x表示科技館從8:30開(kāi)門(mén)后經(jīng)過(guò)的時(shí)間(分鐘),縱坐標(biāo)y表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對(duì)應(yīng)的函數(shù)解析式為y= ,10:00之后來(lái)的游客較少可忽略不計(jì).
(1)請(qǐng)寫(xiě)出圖中曲線對(duì)應(yīng)的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過(guò)684人,后來(lái)的人在館外休息區(qū)等待.從10:30開(kāi)始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時(shí),館外等待的游客可全部進(jìn)入.請(qǐng)問(wèn)館外游客最多等待多少分鐘?
【答案】
(1)
解:由圖象可知,300=a×302,解得a= ,
n=700,b×(30﹣90)2+700=300,解得b=﹣ ,
∴y=
(2)
解:由題意﹣ (x﹣90)2+700=684,
解得x=78,
∴ =15,
∴15+30+(90﹣78)=57分鐘
所以,館外游客最多等待57分鐘
【解析】(1)構(gòu)建待定系數(shù)法即可解決問(wèn)題.(2)先求出館內(nèi)人數(shù)等于684人時(shí)的時(shí)間,再求出直到館內(nèi)人數(shù)減少到624人時(shí)的時(shí)間,即可解決問(wèn)題.本題考查二次函數(shù)的應(yīng)用、一元二次方程等知識(shí),解題的關(guān)鍵是熟練掌握待定系數(shù)法,學(xué)會(huì)用方程的思想思考問(wèn)題,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求△ABP的周長(zhǎng).
(2)問(wèn)t滿足什么條件時(shí),△BCP為直角三角形?
(3)另有一點(diǎn)Q,從點(diǎn)C開(kāi)始,按C→B→A→C的路徑運(yùn)動(dòng),且速度為每秒2cm,若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)P、Q中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng)t為何值時(shí),直線PQ把△ABC的周長(zhǎng)分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,若∠B=40°,∠EAD=15°.
求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑為AB,點(diǎn)C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,已知:點(diǎn)A(﹣2,﹣1)在雙曲線C:y= 上,直線l1:y=﹣x+2,直線l2與l1關(guān)于原點(diǎn)成中心對(duì)稱,F(xiàn)1(2,2),F(xiàn)2(﹣2,﹣2)兩點(diǎn)間的連線與曲線C在第一象限內(nèi)的交點(diǎn)為B,P是曲線C上第一象限內(nèi)異于B的一動(dòng)點(diǎn),過(guò)P作x軸平行線分別交l1 , l2于M,N兩點(diǎn).
(1)求雙曲線C及直線l2的解析式;
(2)求證:PF2﹣PF1=MN=4;
(3)如圖2所示,△PF1F2的內(nèi)切圓與F1F2 , PF1 , PF2三邊分別相切于點(diǎn)Q,R,S,求證:點(diǎn)Q與點(diǎn)B重合.(參考公式:在平面坐標(biāo)系中,若有點(diǎn)A(x1 , y1),B(x2 , y2),則A、B兩點(diǎn)間的距離公式為AB= .)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,黑、白兩個(gè)甲殼蟲(chóng)同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲(chóng)爬行的路線是AA1→A1D1→……,白甲殼蟲(chóng)爬行的路線是AB→BB1→……,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須是既不平行也不相交(其中n是正整數(shù)).那么當(dāng)黑、白兩個(gè)甲殼蟲(chóng)各爬行完第2018條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的距離是( )
A. 0 B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于持續(xù)高溫和連日無(wú)雨,某水庫(kù)的蓄水量隨時(shí)間的增加而減少,已知原有蓄水量y1(萬(wàn)m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示,針對(duì)這種干旱情況,從第20天開(kāi)始向水庫(kù)注水,注水量y2(萬(wàn)m3)與時(shí)間x(天)的關(guān)系如圖中線段l2所示(不考慮其它因素).
(1)求原有蓄水量y1(萬(wàn)m3)與時(shí)間x(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時(shí)的水庫(kù)總蓄水量.
(2)求當(dāng)0≤x≤60時(shí),水庫(kù)的總蓄水量y(萬(wàn)m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬(wàn)m3為嚴(yán)重干旱,直接寫(xiě)出發(fā)生嚴(yán)重干旱時(shí)x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE是AB的垂直平分線.
(1)已知AC=5cm,△ADC的周長(zhǎng)為17cm,則BC的長(zhǎng)__________
(2)若AD平分∠BAC,AD=AC,則∠C= __________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com