【題目】如圖,在等腰梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC.∠A=60°,求對角線BD的長和梯形ABCD的面積.
【答案】2,3
【解析】分析:過點(diǎn)D作DH⊥AB,垂足為H.利用等腰梯形的性質(zhì)證△ABD與△DBH均為含30度角的直角三角形,即可求出AB、BD、DH的長,再利用平行及角平分線證明△BCD為等腰三角形即可得出DC的長,最后利用梯形的面積公式求解即可.
詳解:過點(diǎn)D作DH⊥AB,垂足為H.
在等腰梯形ABCD中,
∵∠A=60°,
∴∠ABC=∠A=60°,
∵BD平分∠ABC,
∴∠ABD=∠CBD =30°,
在△ABD中,
∵∠A+∠ABD+∠ADB=180°,
∴∠ADB=90°
∴AD=AB,
∵AD=2,
∴AB=4.
∴由勾股定理BD=,
在Rt△BDH中,
∵∠DBH=30°,
∴DH=BD=,
∵DC∥AB,
∴∠ABD=∠CDB,
又∵∠ABD=∠CBD,
∴∠CDB=∠CBD,
∴CD=BC=2,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以1個單位長度的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個單位長度的速度運(yùn)動,過點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= , PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運(yùn)動),使四邊形PDBQ在某一時刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個運(yùn)動過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面一段:
計(jì)算
觀察發(fā)現(xiàn),上式從第二項(xiàng)起,每項(xiàng)都是它前面一項(xiàng)的倍,如果將上式各項(xiàng)都乘以,所得新算式中除個別項(xiàng)外,其余與原式中的項(xiàng)相同,于是兩式相減將使差易于計(jì)算.
解:設(shè),①
則,②
②-①得,則.
上面計(jì)算用的方法稱為“錯位相減法”,如果一列數(shù),從第二項(xiàng)起每一項(xiàng)與前一項(xiàng)之比都相等(本例中是都等于),那么這列數(shù)的求和問題,均可用上述“錯位相減”法來解決.
下面請你觀察算式是否具備上述規(guī)律?若是,請你嘗試用“錯位相減”法計(jì)算上式的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,直線y=x向下平移2個單位后和直線y=kx+b(k≠0)重合,直線y=kx+b(k≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B .
(1)請直接寫出直線y=kx+b(k≠0)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點(diǎn)H.
(1)判斷線段DE、FG的位置關(guān)系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是菱形,點(diǎn)E、F分別是菱形ABCD邊AD、CD的中點(diǎn).
(1)求證:BE=BF;
(2)當(dāng)△BEF為等邊三角形時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC=45°,E、F分別在CD和BC的延長線上,AE∥BD,∠EFC=30°, AB=2.
求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com