【題目】已知是等邊三角形,點是直線上一點,以為一邊在的右側作等邊

1)如圖①,點在線段上移動時,直接寫出的大小關系;

2)如圖②,點在線段的延長線上移動時,猜想的大小是否發(fā)生變化.若不變請求出其大。蝗糇兓,請說明理由.

【答案】1,理由見解析;(2,不發(fā)生變化;理由見解析

【解析】

1)由等邊三角形的性質得出∠BAC=DAE,容易得出結論;
2)由△ABC和△ADE是等邊三角形可以得出AB=BC=AC,AD=AE,∠ABC=ACB=BAC=DAE=60°,得出∠ABD=120°,再證明△ABD≌△ACE,得出∠ABD=ACE=120°,即可得出結論.

解:(1;理由如下:

和△是等邊三角形,

,

2,不發(fā)生變化;理由如下:

是等邊三角形,是等邊三角形,

,,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BFCE,垂足為F,則tanFBC的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,、的切線,切點分別為、兩點,點上,如果,那么的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在五張正面分別寫有數(shù)字﹣2,﹣10,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.

1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不大于1的概率是 ;

2)先從中任意抽取一張卡片,以其正面數(shù)字作為a的值,然后再從剩余的卡片隨機抽一張,以其正面的數(shù)字作為b的值,請用列表法或畫樹狀圖法,求點Qa,b)在第二象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一座拋物線型拱橋,已知橋下在正常水位AB時,水面寬8m,水位上升3m, 就達到警戒水位CD,這時水面寬4m,若洪水到來時,水位以每小時0.2m的速度上升,求水過警戒水位后幾小時淹到橋拱頂.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=2,把邊BC繞點B逆時針旋轉30°得到線段BP,連接AP并延長交CD于點E,連接PC,則三角形PCE的面積為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點E,F(xiàn),求證:AE+AF=AD

(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:

在平面直角坐標系中有不重合的兩點和點,小明在學習中發(fā)現(xiàn),若,則軸,且線段的長度為;若,則軸,且線段的長度為;

(應用):

1)若點、,則軸,的長度為__________

2)若點,且軸,且,則點的坐標為__________

(拓展):

我們規(guī)定:平面直角坐標系中任意不重合的兩點之間的折線距離為;例如:圖1中,點與點之間的折線距離為

解決下列問題:

1)如圖1,已知,若,則__________;

2)如圖2,已知,,若,則__________

3)如圖3,已知的,點軸上,且三角形的面積為3,則__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為坐標原點,矩形的頂點,將矩形的一個角沿直線折疊,使得點落在對角線上的點處,折痕與軸交于點.

1)線段的長度為__________;

2)求直線所對應的函數(shù)解析式;

3)若點在線段上,在線段上是否存在點,使四邊形是平行四邊形?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案