分析 (1)先根據(jù)A點和B點坐標得到正方形的邊長,則BC=3,于是可得到C(3,-2),然后利用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式;
(2)設P(t,-$\frac{6}{t}$),根據(jù)三角形面積公式和正方形面積公式得到$\frac{1}{2}$×1×|t|=3×3,然后解絕對值方程求出t即可得到P點坐標.
解答 解:(1)∵點A的坐標為(0,1),點B的坐標為(0,-2),
∴AB=1+2=3,
∵四邊形ABCD為正方形,
∴Bc=3,
∴C(3,-2),
把C(3,-2)代入y=$\frac{k}{x}$得k=3×(-2)=-6,
∴反比例函數(shù)解析式為y=-$\frac{6}{x}$,
把C(3,-2),A(0,1)代入y=ax+b得$\left\{\begin{array}{l}{3a+b=-2}\\{b=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$,
∴一次函數(shù)解析式為y=-x+1;
(2)設P(t,-$\frac{6}{t}$),
∵△OAP的面積恰好等于正方形ABCD的面積,
∴$\frac{1}{2}$×1×|t|=3×3,解得t=18或t=-18,
∴P點坐標為(18,-$\frac{1}{3}$)或(-18,$\frac{1}{3}$).
點評 本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com