【題目】已知關(guān)于x的一元二次方程x2﹣x+m=0有兩個不相等的實數(shù)根.
(1)求實數(shù)m的取值范圍;
(2)若方程的兩個實數(shù)根為x1、x2,且x1+x2+x1x2=m2﹣1,求實數(shù)m的值.
【答案】(1)m<;(2)所求m的值為﹣1.
【解析】
試題分析:(1)由關(guān)于x的一元二次方程x2﹣x+m=0有兩個不相等的實數(shù)根,可得△>0,繼而求得實數(shù)m的取值范圍;
(2)由方程的兩個實數(shù)根為x1、x2,且x1+x2+x1x2=m2﹣1,可得方程1+m=m2﹣1,繼而求得答案.
解:(1)∵方程有兩個不相等的實數(shù)根,
∴△=b2﹣4ac=1﹣4m>0,
即m<;
(2)由根與系數(shù)的關(guān)系可知:x1+x2=1,x1x2=m,
∴1+m=m2﹣1,
整理得:m2﹣m﹣2=0,
解得:m=﹣1或m=2,
∵m<,
∴所求m的值為﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】判斷一元二次方程x2﹣2x+1=0的根的情況是( )
A.只有一個實數(shù)根 B.有兩個相等的實數(shù)根
C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1、2、3、4,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹狀圖或列表法求出小穎參加比賽的概率;
(2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 Rt△ABC中,已知∠C=90°, ∠A=30°,BD是∠B的平分線,AC=18,則BD的值為( )
A. 4.9 B. 9 C. 12 D. 15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人同時開始采摘櫻桃,甲平均每小時采摘8公斤櫻桃,乙平均每小時采摘7公斤櫻桃。采摘同時結(jié)束后,甲從他采摘的櫻桃中取出1公斤給了乙,這時兩人的櫻桃一樣多。他們采摘櫻桃用了多長時間?設(shè)他們采摘了x小時,則下面所列方程中正確的是( )
A. 8x-1=7x+1 B. 8x-1=7x C. 8x+l=7x D. 8x+l=7x-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點D為AB的中點.如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為v厘米/秒,則當△BPD與△CQP全等時,v的值為( )
A. 2或3 B. 3 C. 2 D. 1或5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合.將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當點Q在線段AC上,求證:△BPE∽△CEQ;
(2)如圖①,當點Q在線段AC上,當AP=4,BP=8時,求P、Q兩點間的距離;
(3)如圖②,當點Q在線段CA的延長線上,若BP=2a,CQ=9a,求PE:EQ的值,并直接寫出△EPQ的面積 (用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了參加中考體育測試,甲、乙、丙三位同學進行足球傳球訓練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳給其余兩人的機會是均等的,由甲開始傳球,共傳球三次.
(1)請利用樹狀圖列舉出三次傳球的所有可能情況;
(2)求三次傳球后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com