【題目】如圖,AB是⊙O的直徑,AB=AC,AC交⊙O于點(diǎn)E,BC交⊙O于點(diǎn)D,FCE的中點(diǎn),連接DF.則下列結(jié)論錯(cuò)誤的是

A.A=ABEB.

C.BD=DCD.DF是⊙O的切線

【答案】A

【解析】

首先由AB是⊙O的直徑,得出ADBC,推出BDDC,再由OAOB,推出ODABC的中位線,得DFOD,即DF是⊙O的切線,最后由假設(shè)推出不正確.

解:連接OD,AD

AB是⊙O的直徑,

∴∠ADB90°(直徑所對(duì)的圓周角是直角),

ADBC

而在ABC中,ABAC,

AD是邊BC上的中線,

BDDCC選項(xiàng)正確);

AB是⊙O的直徑,

ADBC

ABAC,

DBDC,∠BAD=∠CAD

,(B選項(xiàng)正確);

OAOB

ODABC的中位線,

即:ODAC,

DFAC,

DFOD

DF是⊙O的切線(D選項(xiàng)正確);

只有當(dāng)ABE是等腰直角三角形時(shí),∠A=∠ABE45°,

A選項(xiàng)錯(cuò)誤,

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃招募10名技術(shù)人員,他們對(duì)20名面試合格人員進(jìn)行了測(cè)試,測(cè)試包括理論知識(shí)和實(shí)踐操作兩部分,20名應(yīng)聘者的成績(jī)排名情況如圖所示,下面有3個(gè)推斷:

①甲測(cè)試成績(jī)非常優(yōu)秀,入選的可能性很大;

②乙的理論知識(shí)排名比實(shí)踐操作排名靠前;

③位于橢圓形區(qū)域內(nèi)的應(yīng)聘者應(yīng)該加強(qiáng)該專業(yè)理論知識(shí)的學(xué)習(xí);

其中合理的是_____.(寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形是正方形,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,連接,過點(diǎn)的延長(zhǎng)線于,連接

1)依題意補(bǔ)全圖1;

2)直接寫出的度數(shù);

3)連接,用等式表示線段的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):

萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,Rr分別為外接圓和內(nèi)切圓的半徑,OI分別為其外心和內(nèi)心,則.

如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點(diǎn)F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點(diǎn))與內(nèi)心I(三角形三條角平分線的交點(diǎn))之間的距離OI=d,則有d2=R2﹣2Rr.

下面是該定理的證明過程(部分):

延長(zhǎng)AI⊙O于點(diǎn)D,過點(diǎn)I⊙O的直徑MN,連接DM,AN.

∵∠D=∠N,∠DMI=∠NAI(同弧所對(duì)的圓周角相等),

∴△MDI∽△ANI,

①,

如圖2,在圖1(隱去MDAN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF,

∵DE⊙O的直徑,∴∠DBE=90°,

∵⊙IAB相切于點(diǎn)F,∴∠AFI=90°,

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所對(duì)圓周角相等),

∴△AIF∽△EDB,

②,

任務(wù):(1)觀察發(fā)現(xiàn): (用含R,d的代數(shù)式表示)

(2)請(qǐng)判斷BDID的數(shù)量關(guān)系,并說明理由;

(3)請(qǐng)觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;

(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,在九年級(jí)隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績(jī)?yōu)闃颖荆譃?/span>分)、分)、分)、分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問題:

1)這次隨機(jī)抽取的學(xué)生共有多少人?

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

3)這個(gè)學(xué)校九年級(jí)共有學(xué)生人,若分?jǐn)?shù)為分(含分)以上為優(yōu)秀,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)共有80名同學(xué)參與數(shù)學(xué)科托底訓(xùn)練.其中(1)班30人,(2)班25人,(3)班25人,呂老師在托底訓(xùn)練后對(duì)這些同學(xué)進(jìn)行測(cè)試,并對(duì)測(cè)試成績(jī)進(jìn)行整理,得到下面統(tǒng)計(jì)圖表.

1)表格中的m落在________組;(填序號(hào))

40≤x50, 50≤x60, 60≤x70,

70≤x80, 80≤x90, 90≤x≤100

2)求這80名同學(xué)的平均成績(jī);

3)在本次測(cè)試中,(2)班小穎同學(xué)的成績(jī)是70分,(3)班小榕同學(xué)的成績(jī)是74分,這兩位同學(xué)成績(jī)?cè)谧约核诎嗉?jí)托底同學(xué)中的排名,誰(shuí)更靠前?請(qǐng)簡(jiǎn)要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,

1)請(qǐng)用尺規(guī)作圖的方法在邊上確定點(diǎn),使得點(diǎn)到邊的距離等于的長(zhǎng);(保留作用痕跡,不寫作法)

2)在(1)的條件下,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎為班級(jí)聯(lián)歡會(huì)設(shè)計(jì)了一個(gè)配紫色游戲:如圖是兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤被分成面積相等的三個(gè)扇形.游戲者同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,如果一個(gè)轉(zhuǎn)盤轉(zhuǎn)出紅色,另一個(gè)轉(zhuǎn)盤轉(zhuǎn)出藍(lán)色,那么就能配成紫色.小明和小亮參加這個(gè)游戲,并約定:若配成紫色,則小明贏;若兩個(gè)轉(zhuǎn)盤轉(zhuǎn)出的顏色相同,則小亮贏.這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)僅用無刻度的直尺,根據(jù)下列條件分別在圖(1),圖(2),(3)中作出△ABC的邊AB上的高CD

1)如圖(1),以銳角三角形ABC的邊AB為直徑的圓,與邊BCAC分別交于點(diǎn)E、F

2)如圖(2),以等腰三角形ABC的底邊AB為直徑的圓,頂點(diǎn)C在圓內(nèi);

3)如圖(3),以鈍角三角形ABC的一短邊AB為直徑的圓,與最長(zhǎng)的邊AC相交于點(diǎn)E

查看答案和解析>>

同步練習(xí)冊(cè)答案