【題目】如圖1,在ABCD中,DH⊥AB于點H,CD的垂直平分線交CD于點E,交AB于點F,AB=6,DH=4,BF:FA=1:5.
(1)如圖2,作FG⊥AD于點G,交DH于點M,將△DGM沿DC方向平移,得到△CG′M′,連接M′B.
①求四邊形BHMM′的面積;
②直線EF上有一動點N,求△DNM周長的最小值.
(2)如圖3,延長CB交EF于點Q,過點Q作QK∥AB,過CD邊上的動點P作PK∥EF,并與QK交于點K,將△PKQ沿直線PQ翻折,使點K的對應點K′恰好落在直線AB上,求線段CP的長.
【答案】(1)①四邊形BHMM′的面積為7.5;②△DNM周長的最小值為9;(2)CP的長為或.
【解析】(1)①根據(jù)相似三角形的判定和性質(zhì)以及平移的性質(zhì)進行解答即可;
②連接CM交直線EF于點N,連接DN,利用勾股定理解答即可;
(2)分點P在線段CE上和點P在線段ED上兩種情況進行解答.
(1)①在ABCD中,AB=6,直線EF垂直平分CD,
∴DE=FH=3,
又BF:FA=1:5,
∴AH=2,
∵Rt△AHD∽Rt△MHF,
∴,
即,
∴HM=1.5,
根據(jù)平移的性質(zhì),MM'=CD=6,連接BM,如圖1,
四邊形BHMM′的面積==7.5;
②連接CM交直線EF于點N,連接DN,如圖2,
∵直線EF垂直平分CD,
∴CN=DN,
∵MH=1.5,
∴DM=2.5,
在Rt△CDM中,MC2=DC2+DM2,
∴MC2=62+(2.5)2,
即MC=6.5,
∵MN+DN=MN+CN=MC,
∴△DNM周長的最小值為9;
(2)∵BF∥CE,
∴,
∴QF=2,
∴PK=PK'=6,
過點K'作E'F'∥EF,分別交CD于點E',交QK于點F',如圖3,
當點P在線段CE上時,
在Rt△PK'E'中,
PE'2=PK'2﹣E'K'2,
∴PE′=2,
∵Rt△PE'K'∽Rt△K'F'Q,
∴,
即,
解得:QF′=,
∴PE=PE'﹣EE'=,
∴CP=,
同理可得,當點P在線段DE上時,CP′=,,如圖4,
綜上所述,CP的長為或.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,是由一個等邊△ABE和一個矩形BCDE拼成的一個圖形,其點B,C,D的坐標分別為(1,2),(1,1),(3,1).
(1)直接寫出E點和A點的坐標;
(2)試以點B為位似中心,作出位似圖形A1B1C1D1E1,使所作的圖形與原圖形的位似比為3∶1;
(3)直接寫出圖形A1B1C1D1E1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知□ABCD中,A(1,3), B(2,-1), C(5,-5)
(1)D的坐標為____________.
(2)若經(jīng)過原點的一條直線平分□ABCD的面積,求此直線的解析式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=-x+3與x軸、y軸相交于A、B兩點,點C在線段OA上,將線段CB繞著點C順時針旋轉(zhuǎn)90°得到CD,此時點D恰好落在直線AB上,過點D作DE⊥x軸于點E.
(1)求證:△BOC≌△CED;
(2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當B'C'經(jīng)過點D時,求△BCD平移的距離及點D的坐標;
(3)若點P在y軸上,點Q在直線AB上,是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M是正方形ABCD邊CD上一點,連接AM,作DE⊥AM于點E,BF⊥AM于點F,連接BE.
(1)求證:AE=BF;
(2)已知AF=2,四邊形ABED的面積為24,求∠EBF的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=3∠BCF,∠ACF=20°.
(1)求∠FEC的度數(shù);
(2)若∠BAC=3∠B,求證:AB⊥AC;
(3)當∠DAB=______度時,∠BAC=∠AEC.(請直接填出結(jié)果,不用證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,Rt△ABC中,∠C=90.
(1)當∠B=60時,=_______;當∠A=45時,=_______.
(2)當∠B=2∠A時,求的值;
(3)若AB=2BC,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雅美服裝廠有A種布料70m,B種布料52米.現(xiàn)計劃用這兩種布料生產(chǎn)M、N兩種型號的時裝共80套,已知做一套M型號的時裝共需A種布料0.6m,B種布料0.9m;做一套N型號的時裝需要A種布料1.1m,B種布料0.4m.
(1)設生產(chǎn)x套M型號的時裝,寫出x應滿足的不等式組;
(2)有哪幾種符合題意的生產(chǎn)方案?請你幫助設計出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線交AB于點E,交AC的延長線于點F.
(1)求證:DE⊥AB;
(2)若tan∠BDE=, CF=3,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com