【題目】已知忠華家、桂枝家、文興家及學(xué)校在一條南北向的大街旁.一天,放學(xué)后他們?nèi)藦膶W(xué)校出發(fā),先向南走250米達(dá)到桂枝家(記為點(diǎn)A),然后再向南走250米到文興家(記為點(diǎn)B),從文興家向北走1000米到達(dá)忠華家(記為點(diǎn)C).
(1)以學(xué)校為原點(diǎn),以向北方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示實(shí)際距離250米畫出一條數(shù)軸,在數(shù)軸上用字母表示出忠華家、桂枝家、文興家的位置.
(2)忠華家在學(xué)校的哪個(gè)方向,到學(xué)校的距離是多少米?
(3)如果以向南方向?yàn)檎较蚪?shù)軸,對(duì)確定忠華家相對(duì)于學(xué)校的位置有影響嗎?說明理由.
【答案】(1)見解析;(2)忠華家在學(xué)校的北面,到學(xué)校的距離是500米;(3)如果以向南方向?yàn)檎较蚪?shù)軸,確定忠華家相對(duì)于學(xué)校的位置沒有影響,數(shù)軸見解析。
【解析】
(1)根據(jù)題意,確定原點(diǎn)、正方向和單位長(zhǎng)度,借助數(shù)軸確定桂枝、文興、忠華家的位置;
(2)根據(jù)(1)中數(shù)軸,得出忠華家在學(xué)校的位置和距離;
(3)重新畫數(shù)軸,得出忠華家在學(xué)校的位置和距離.
(1)因?yàn)閷W(xué)校是原點(diǎn),向北方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示250米.
從學(xué)校出發(fā)南行250米到達(dá)桂枝家,所以點(diǎn)A在﹣1處,從A向南行250米到達(dá)文興家,所以點(diǎn)B在﹣2處,從B向北行1000米到忠華家,所以點(diǎn)C在2處.
(2)點(diǎn)C是2,所以忠華家在學(xué)校的北面,到學(xué)校的距離是500米;
(3)如果以向南方向?yàn)檎较蚪?shù)軸,確定忠華家相對(duì)于學(xué)校的位置沒有影響,
如果以向南方向?yàn)檎较蚪?shù)軸,數(shù)軸如下:
點(diǎn)C是﹣2,所以忠華家在學(xué)校的北面,到學(xué)校的距離是500米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行比賽的路程與時(shí)間的關(guān)系如圖所示.
(1)這是一場(chǎng)________米比賽;
(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;
(3)兩人第________秒在途中相遇,相遇時(shí)距終點(diǎn)________米;
(4)甲在前8秒的平均速度是多少?甲在整個(gè)賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個(gè)賽程的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù)M>0,對(duì)于任意的函數(shù)值y,都滿足﹣M≤y≤M,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的M中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,如圖中的函數(shù)是有界函數(shù),其邊界值是1.
(1)分別判斷函數(shù) y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;
(2)若函數(shù)y=﹣x+1(a≤x≤b,b>a)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求b的取值范圍;
(3)將函數(shù) y=x2(﹣1≤x≤m,m≥0)的圖象向下平移m個(gè)單位,得到的函數(shù)的邊界值是t,當(dāng)m在什么范圍時(shí),滿足≤t≤1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線分別交x軸、y軸于A、B兩點(diǎn),拋物線經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請(qǐng)說明理由;若存在,求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下表,回答問題:
x | … | -2 | -1 | 0 | 1 | 2 | … |
-2x+5 | … | 9 | 7 | 5 | 3 | a | … |
2x+8 | … | 4 | 6 | 8 | 10 | b | … |
(初步感知)
(1)a= ;b= ;
(歸納規(guī)律)
(2)隨著x值的變化,兩個(gè)代數(shù)式的值變化規(guī)律是什么?
(問題解決)
(3)比較-2x+5與2x+8的大;
(4)請(qǐng)寫出一個(gè)含x的代數(shù)式,要求x的值每增加1,代數(shù)式的值減小5,當(dāng)x=0時(shí),
代數(shù)式的值為-7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1)在RtΔABC中,∠ACB=900,∠B=600,在圖中作出∠ACB的三等分線CD,CE.(要求:尺規(guī)作圖,保留痕跡,不定作法)
(2)由(1)知,我們可以用尺規(guī)作出直角的三等分線,但是僅僅使用尺規(guī)卻不能把任意一個(gè)角分成三等分,為此,人們發(fā)明了許多等分角的機(jī)械器具,如圖(2)是用三張硬紙片自制的一個(gè)最簡(jiǎn)單的三分角器,與半圓O相接的AB帶的長(zhǎng)度與半圓的半徑相等:BD帶的長(zhǎng)度任意,它的一邊與直線AC形成一個(gè)直角,且志半圓相切于點(diǎn)B,假設(shè)需要將∠KSM三等分,如圖(3),首先將角的頂點(diǎn)S置于BD上,角的一邊SK經(jīng)過點(diǎn)A,另一邊SM與半圓相切,連接SO,則SB,SO為∠KSM的三等分線,請(qǐng)你證明。
圖(1) 圖(2) 圖(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=kx的圖像經(jīng)過點(diǎn)A,點(diǎn)A在第四象限.過點(diǎn)A做AH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為4.5.
(1)求該正比例函數(shù)的解析式;
(2)在x軸上是否存在一點(diǎn)P,使△AOP的面積為6?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C:y=mx2+4x+1.
(1)當(dāng)拋物線C經(jīng)過點(diǎn)A(-5,6)時(shí),求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)當(dāng)直線y=-x+l與直線y=x+3關(guān)于拋物線C的對(duì)稱軸對(duì)稱時(shí),求m的值;
(3)若拋物線C:y=mx2+4x+l(m>0)與x軸的交點(diǎn)的橫坐標(biāo)都在-l和0之間(不包括-l和0).結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com