【題目】已知:在△ABC外分別以ABAC為邊作△AEB與△AFC

1)如圖1,△AEB與△AFC分別是以AB,AC為斜邊的等腰直角三角形,連接EF.以EF為直角邊構造RtEFG,且EFFG,連接BGCG,EC

求證:①△AEF≌△CGF;②四邊形BGCE是平行四邊形.

2)小明受到圖1的啟發(fā)做了進一步探究:

如圖2,在△ABC外分別以AB,AC為斜邊作RtAEBRtAFC,并使∠FAC=∠EAB30°,取BC的中點D,連接DE,EF后發(fā)現(xiàn),兩者間存在一定的數(shù)量關系且夾角度數(shù)一定,請你幫助小明求出的值及∠DEF的度數(shù).

3)小穎受到啟發(fā)也做了探究:

如圖3,在△ABC外分別以ABAC為底邊作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB90°,取BC的中點D,連接DE,EF后發(fā)現(xiàn),當給定∠EABα時,兩者間也存在一定的數(shù)量關系且夾角度數(shù)一定,若AEm,ABn,請你幫助小穎用含m,n的代數(shù)式直接寫出的值,并用含α的代數(shù)式直接表示∠DEF的度數(shù).

【答案】1)①見解析;②見解析;(2;(3cosDEF

【解析】

1)①根據(jù)SAS即可證明三角形全等.

②想辦法證明BECGBECG即可.

2)如圖2中,延長EDG,使得DGED,連接CG,FG.證明△CGF∽△AEF,推出,∠CFG=∠AFE,推出∠EFG=∠CFG+∠EFC=∠AFE+∠EFC90°,推出tanDEF,可得∠DEF30°即可解決問題.

3)如圖3中,延長EDG,使得DGED,連接CG,FG.作EHABH,連接FD.想辦法證明∠AEH=∠DEF,利用勾股定理求出EH,即可解決問題.

1)證明:①如圖1中,

∵△EFC與△AFC都是等腰直角三角形,

FAFC,FEFG,∠AFC=∠EFG90°,

∴∠AFE=∠CFG,

∴△AFE≌△CFGSAS).

②∵△AFE≌△CFG,

AECG,∠AEF=∠CGF

∵△AEB是等腰直角三角形,

AEBE,∠BEA90°,

CGBE,

∵△EFG是等腰直角三角形,

∴∠FEG=∠FGE45°,

∴∠AEF+∠BEG45°,

∵∠CGE+∠CGF45°,

∴∠BEG=∠CGE

BECG,

∴四邊形BECG是平行四邊形.

2)解:如圖2中,延長EDG,使得DGED,連接CGFG

∵點DBC的中點,

BDCD

∵∠EDB=∠GDC,

EBGC,∠EBD=∠GCD

RtAEBRtAFC中,

∵∠EAB=∠FAC30°,

,,

,

∵∠EBD=∠2+60°,

∴∠DCG=∠2+60°,

∴∠GCF360°﹣60°﹣(∠2+60°)﹣∠3

360°﹣120°﹣(∠2+∠3

360°﹣120°﹣(180°﹣∠1

60°+∠1,

∵∠EAF30°+∠1+30°=60°+∠1,

∴∠GCF=∠EAF,

∴△CGF∽△AEF,

,∠CFG=∠AFE,

∴∠EFG=∠CFG+∠EFC=∠AFE+∠EFC90°,

tanDEF,

∴∠DEF30°,

FGEG,

EDEG,

EDFG

3)如圖3中,延長EDG,使得DGED,連接CG,FG.作EHABH,連接FD

BDDC,∠BDE=∠CDG,DEDG,

∴△CDG≌△BDESAS),

CGBEAE,∠DCG=∠DBEα+∠ABC,

∵∠GCF360°﹣∠DCG﹣∠ACB﹣∠ACF360°﹣(α+∠ABC)﹣∠ACB﹣(90°﹣α)=270°﹣(∠ABC+∠ACB)=270°﹣(180°﹣∠BAC)=90°+∠BAC=∠EAF

∴△EAF≌△GCFSAS),

EFGF,∠AFE=∠CFG,

∴∠AFC=∠EFC,

∴∠DEF=∠CAF90°﹣α,

∵∠AEH90°﹣α

∴∠AEH=∠DEF,

AEm,AHABn,

EH

DEDG,EFGF,

DFEG

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2-2k-1x+k2,其中k是常數(shù).

1)若該拋物線與x軸有交點,求k的取值范圍;

2)若此拋物線與x軸其中一個交點的坐標為(-1,0),試確定k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,C、D是AB三等分點,AB分別交OC、OD于點E、F,求證:AE=BF=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一紙板的形狀為正方形ABCD如圖所示.其邊長為10厘米,AD、BC與投影面β平行,AB、CD與投影面不平行,正方形在投影面β上的正投影為A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,甲、乙兩人在玩轉盤游戲時,分別把轉盤A,B分成3等份和1等份,并在每一份內標上數(shù)字.游戲規(guī)則:同時轉動兩個轉盤,當轉盤停止后,指針所在區(qū)域的數(shù)字之積為奇數(shù)時,甲獲勝;當數(shù)字之積為偶數(shù)時,乙獲勝.如果指針恰好在分割線上時,則需重新轉動轉盤.

1)利用畫樹狀圖或列表的方法,求甲獲勝的概率.

2)這個游戲規(guī)則對甲、乙雙方公平嗎?若公平,請說明理由;若不公平,請你在轉盤A上只修改一個數(shù)字使游戲公平(不需要說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列給定的三點能確定一個圓的是(

A. 線段的中點及兩個端點

B. 角的頂點及角的邊上的兩點

C. 三角形的三個頂點

D. 矩形的對角線交點及兩個頂點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為3/個的某品牌粽子,根據(jù)市場預測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進價的200%,請你利用所學知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1、圖2、圖3、…、圖n分別是⊙O的內接正三角形ABC,正四邊形ABCD、正五邊形ABCDE、…、正n邊形ABCD…,點M、N分別從點B、C開始以相同的速度在⊙O上逆時針運動。

(1)求圖1中∠APN的度數(shù);

(2)2中,∠APN的度數(shù)是_______,圖3中∠APN的度數(shù)是________。

(3)試探索∠APN的度數(shù)與正多邊形邊數(shù)n的關系(直接寫答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在11×11的正方形網格中,TAB的頂點分別為T1,1),A2,3),B4,2).

1)以點T11)為位似中心,按比例尺(TA′TA31,在位似中心的同側將TAB放大為TA′B′,放大后點A,B的對應點分別為A′,B′,畫出TA′B′,并寫出點A′,B′的坐標;點A′的坐標為 ,點B′的坐標為

2)在(1)中,若Ca,b)為線段AB上任一點,寫出變化后點C的對應點C′的坐標為

查看答案和解析>>

同步練習冊答案