【題目】已知一紙板的形狀為正方形ABCD如圖所示.其邊長為10厘米,AD、BC與投影面β平行,AB、CD與投影面不平行,正方形在投影面β上的正投影為A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面積.

【答案】50平方厘米.

【解析】試題分析:如圖所示,過AAHBB1H,由∠ABB1=45°可得△ABH是等腰直角三角形,結(jié)合cos45°可求出AH的長度,即求出A1B1的長度,又因?yàn)?/span>A1D1AD,求出矩形A1B1C1D1的面積即可.

試題解析:

如圖所示,過AAHBB1H

∵∠ABB1=45°,

∴△ABH是等腰直角三角形,

AHAB·cos45°=10×=5(厘米),

A1B1AH=5(厘米),

A1D1AD=10(厘米),

∴矩形A1B1C1D1的面積=A1B1·A1D1=5×10=50(平方厘米).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的位置如圖(每個(gè)小正方形的邊長均為1)

(1)請(qǐng)畫出△ABC沿軸向右平移3個(gè)單位長度,再沿軸向上平移2個(gè)單位長度后的(其中分別是AB、C的對(duì)應(yīng)點(diǎn),不寫畫法);

(2)直接寫出三點(diǎn)的坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC邊的中點(diǎn),將△ABE沿AE所在的直線折疊得到△AFE,延長AFCD于點(diǎn)G,已知CG=2,DG=1,則BC的長是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與直線y=x+2交于C、D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為(3,).點(diǎn)P是y軸右側(cè)的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,交CD于點(diǎn)F.

(1)求拋物線的解析式;

(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè)、C、P、F為頂點(diǎn)的四邊形是平行四邊形?請(qǐng)說明理由.

(3)若存在點(diǎn)P,使∠PCF=45°,請(qǐng)直接寫出相應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為a.直線ybx+cx軸于E,交y軸于F,且a、bc分別滿足﹣(a420,c+8.

1)求直線ybx+c的解析式并直接寫出正方形OABC的對(duì)角線的交點(diǎn)D的坐標(biāo);

2)直線ybx+c沿x軸正方向以每秒移動(dòng)1個(gè)單位長度的速度平移,設(shè)平移的時(shí)間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由;

3)點(diǎn)P為正方形OABC的對(duì)角線AC上的動(dòng)點(diǎn)(端點(diǎn)A、C除外),PMPO,交直線ABM,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=D有下列五個(gè)條件①AE=DE BE=CE AB=DC ④∠ABC=DCBAC=BD能證明ABCDCB全等的條件有幾個(gè)?并選擇其中一個(gè)進(jìn)行證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.

(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);

(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動(dòng),過點(diǎn)P作,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為秒.

NPH的面積為1,求的值;

點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊 ABC 的邊長是 2 D 、 E 分別為 AB AC 的中點(diǎn),連接CD ,過 E 點(diǎn)作 EF // DC BC 的延長線于點(diǎn) F

(1) 求證:四邊形 CDEF 是平行四邊形;

(2)求四邊形 CDEF 的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的推理.

如圖,BE平分ABD,DE平分BDC,且α+β=90°,試說明:ABCD.

完成推理過程:

BE平分∠ABD(已知),

∴∠ABD2α(__________)

DE平分∠BDC(已知),

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知)

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

查看答案和解析>>

同步練習(xí)冊(cè)答案