如圖,PA、PB分別切⊙O于A、B,并與⊙O的另一條切線分別相交于D、C兩點,已知PA=6,則△PCD的周長=       

 

 

【答案】

12

【解析】

試題分析:切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線,平分兩條切線的夾角.

設(shè)DC與⊙O的切點為E

∵PA、PB分別是⊙O的切線,且切點為A、B

∴PA=PB=6

同理可得DE=DA,CE=CB

則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=12.

考點:切線長定理

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA、PB分別切圓O于A、B兩點,C為劣弧AB上一點,已知∠P=50°,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,PA、PB分別切圓O于A、B兩點,C為劣弧AB上一點,∠APB=30°,則∠ACB=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,PA,PB分別切⊙O于點A,B,點C是AB上一點,過C作⊙O的切線,交PA,PB于點D,E,若PA=6cm,則△PDE的周長是
12
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•綿陽)如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點,∠C=60°.
(1)求∠APB的大。
(2)若PO=20cm,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,PA,PB分別切⊙O于點A和點B,C是
AB
上任一點,過C的切線分別交PA,PB于D,E.若⊙O的半徑為6,PO=10,則△PDE的周長是(  )

查看答案和解析>>

同步練習冊答案