【題目】已知,在△ABC中,AB=AC.過A點的直線a從與邊AC重合的位置開始繞點A按順時針方向旋轉(zhuǎn)角θ,直線a交BC邊于點P(點P不與點B、點C重合),△BMN的邊MN始終在直線a上(點M在點N的上方),且BM=BN,連接CN.
(1)當(dāng)∠BAC=∠MBN=90°時,
①如圖a,當(dāng)θ=45°時,∠ANC的度數(shù)為 ;
②如圖b,當(dāng)θ≠45°時,①中的結(jié)論是否發(fā)生變化?說明理由;
(2)如圖c,當(dāng)∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.
【答案】(1)①45°;②當(dāng)θ≠45°時,①中的結(jié)論不發(fā)生變化,理由見解析;(2)∠ANC=90°﹣∠BAC.
【解析】試題分析:(1)①證明四邊形ABNC是正方形,根據(jù)正方形的對角線平分一組對角線即可求解;
②根據(jù)等腰直角三角形的性質(zhì)可得∠BNP=∠ACB,然后證明△BNP和△ACP相似,根據(jù)相似三角形對應(yīng)邊成比例可得,再根據(jù)兩邊對應(yīng)成比例夾角相等可得△ABP和△CNP相似,然后根據(jù)相似三角形對應(yīng)角相等可得∠ANC=∠ABC,從而得解;
(2)根據(jù)等腰三角形的兩底角相等求出∠BNP=∠ACB,然后證明△BNP和△ACP相似,根據(jù)相似三角形對應(yīng)邊成比例可得,再根據(jù)兩邊對應(yīng)成比例夾角相等可得△ABP和△CNP相似,然后根據(jù)相似三角形對應(yīng)角相等可得∠ANC=∠ABC,然后根據(jù)三角形的內(nèi)角和定理列式整理即可得解.
試題解析:(1)①∵∠BAC=90°,θ=45°,∴AP⊥BC,BP=CP(等腰三角形三線合一),
∴AP=BP(直角三角形斜邊上的中線等于斜邊的一半),
又∵∠MBN=90°,BM=BN,∴AP=PN(等腰三角形三線合一),
∴AP=PN=BP=PC,且AN⊥BC,∴四邊形ABNC是正方形,∴∠ANC=45°;
②連接CN,當(dāng)θ≠45°時,①中的結(jié)論不發(fā)生變化.
理由如下:∵∠BAC=∠MBN=90°,AB=AC,BM=BN,∴∠ABC=∠ACB=∠BNP=45°,
又∵∠BPN=∠APC,∴△BNP∽△ACP,∴,
又∵∠APB=∠CPN,∴△ABP∽△CNP,
∴∠ANC=∠ABC=45°;
(2)∠ANC=90°﹣∠BAC.
理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP=(180°﹣∠BAC),
又∵∠BPN=∠APC,∴△BNP∽△ACP,∴,
又∵∠APB=∠CPN,∴△ABP∽△CNP,∴∠ANC=∠ABC,
在△ABC中,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年參加我市初中畢業(yè)生學(xué)業(yè)考試的總?cè)藬?shù)約為56000人,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為( )
A.5.6×103
B.5.6×104
C.5.6×105
D.0.56×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算(3x-2)(2-3x)結(jié)果正確的是( )
A. 9x2-4 B. 4-9x2 C. -9x2+12x-4 D. 9x2-12x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,第一個正方形ABCD的位置如圖所示,點A的坐標為(2,0),點D的坐標為(0,4).延長CB交x軸于點A1,作第二個正方形A1B1C1C;延長C1B1交x軸于點A2,作第三個正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2016個正方形的面積為( 。
A. 20×()4030 B. 20×()4032 C. 20×()2016 D. 20×()2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的坐標系中,畫出函數(shù)y=2與y=2x+6的圖象,并結(jié)合圖象求:
(1)方程2x+6=0的解;
(2)不等式2x+6>2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y與x-3成正比例,當(dāng)x=4時,y=3.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時,y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com