【題目】觀察下列等式的規(guī)律,解答下列問題:

(1)按此規(guī)律,第④個等式為_________;第個等式為_______;(用含的代數(shù)式表示,為正整數(shù))

(2)按此規(guī)律,計算:

【答案】(1)2×34,2×3n;(2)①726;②(3n+1-3).

【解析】

(1)對比列式中的規(guī)律變化,找到算式和序號的規(guī)律即可求解;

(2)找到算式規(guī)律,根據(jù)錯位相減的方法即可求解.

1)由題意得:

第④個等式為:35-34=2×34

n個等式為3n+1-3n=2×3n,

故答案為:35-34=2×34, 3n+1-3n=2×3n.

2

①2×31+2×32+2×33+2×34+2×35

=32-3+33-32+34-33+35-34+36-35

=36-3

=726.

②31+32+33+···+3n

(32-3)+(33-32)+(34-33)+···+(3n+1-3n)

(32-3+33-32+34-33+···+3n+1-3n)

(3n+1-3).

故答案為:①726, ②(3n+1-3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天早晨,王老師從家出發(fā)步行前往學(xué)校,途中在路邊一飯店吃早餐,如圖所示是王老師從家到學(xué)校這一過程中的所走路程s(米)與時間t(分)之間的關(guān)系.

1)學(xué)校離他家  米,從出發(fā)到學(xué)校,王老師共用了  分鐘;王老師吃早餐用了 分鐘?

2)觀察圖形直接回答王老師吃早餐以前的速度快還是吃完早餐以后的速度快?

3)求出王老師吃完早餐后的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當(dāng)O為多少度時,CD平分OCF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某氣球內(nèi)充滿了一定量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的壓強(qiáng)kPa)是氣體體積m3)的反比例函數(shù),其圖像如圖所示.

1)求這個反比例函數(shù)的表達(dá)式;

2)當(dāng)氣球內(nèi)的體積為氣體1.6m3時,求氣體壓強(qiáng)的值:

3)當(dāng)氣球內(nèi)的氣體壓強(qiáng)大于150kPa時,氣球?qū)⒈,為了安全起見,氣體的體積不小于多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一棟居民樓AB的高為16米,遠(yuǎn)處有一棟商務(wù)樓CD,小明在居民樓的樓底A處測得商務(wù)樓頂D處的仰角為,又在商務(wù)樓的樓頂D處測得居民樓的樓頂B處的俯角為.其中A、C兩點分別位于B、D兩點的正下方,且A、C兩點在同一水平線上,求商務(wù)樓CD的高度.

(參考數(shù)據(jù): , .結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線過A(-1,0)、B(3,0)、C(0,-1)三點.

1求該拋物線的表達(dá)式;

(2)若該拋物線的頂點為D,求直線AD的解析式;

(3)點Qy軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,求所有滿足條件的點標(biāo).P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場對外批發(fā)某品脾的玩具,其價格與件數(shù)關(guān)系如圖所示,請你根據(jù)圖中描述判斷:下列說法中錯誤的是( )

A. 當(dāng)件數(shù)不超過30件時,每件價格為60

B. 當(dāng)件數(shù)在3060之間時,每件價格隨件數(shù)增加而減少

C. 當(dāng)件數(shù)為50件時,每件價格為55

D. 當(dāng)件數(shù)不少于60件時,每件價格都是45

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點OAOCO,BODO,且∠ABC+ADC180°

1)求證:四邊形ABCD是矩形;

2)若∠ADF:∠FDC32,DFAC,求∠BDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.

1)已知:如圖1,四邊形ABCD的頂點A,B,C在網(wǎng)格格點上,請你在如下的57的網(wǎng)格中畫出3個不同形狀的等鄰邊四邊形ABCD,要求頂點D在網(wǎng)格格點上

2)如圖2,矩形ABCD中,AB=,BC=5,點EBC邊上,連結(jié)DEAFDE于點F,若DE=CD,找出圖中的等鄰邊四邊形;

3)如圖3,在RtABC中,ACB=90°,AB=4AC=2,DBC的中點,點MAB邊上一點,當(dāng)四邊形ACDM等鄰邊四邊形時,求BM的長.

查看答案和解析>>

同步練習(xí)冊答案