【題目】在△ABC中,點D在AB邊上,AD=CD,DE⊥AC于點E,CF∥AB,交DE的延長線于點F.
(1)如圖1,求證:四邊形ADCF是菱形;
(2)如圖2,當(dāng)∠ACB=90°,∠B=30°時,在不添加輔助線的情況下,請直接寫出圖中與線段AC相等的線段(線段AC除外).
【答案】
(1)證明:如圖1,
∵AD=CD,DE⊥AC,
∴∠DCA=∠ADC,CE=AE,
∵CF∥AB,
∴∠ECF=∠EAD,
∴∠DCA=∠ECF,
即CE平分∠DCF,
而CE⊥DF,
∴CD=CF,
∴AD∥CF,
∴四邊形ADCF為平行四邊形,
而DA=DC,
∴四邊形ADCF是菱形
(2)解:如圖2,∵∠ACB=90°,∠B=30°,
∴∠BAC=60°,
而DA=DC,
∴△ADC為等邊三角形,
∴AC=AD=CD,∠ACD=60°,
∵四邊形ADCF為菱形,
∴AC=AD=DC=CF=AF,
∵∠B=∠DCB=30°,
∴BD=CD,
∴AC=AD=DC=CF=AF=BD
【解析】(1)如圖1,利用等腰三角形的性質(zhì)得∠DCA=∠ADC,CE=AE,再利用CF∥AB得到∠ECF=∠EAD,則∠DCA=∠ECF,于是根據(jù)等腰三角形的判定方法可得CD=CF,所以四邊形ADCF為平行四邊形,
加上DA=DC可判斷四邊形ADCF是菱形;(2)如圖2,先證明△ADC為等邊三角形得到AC=AD=CD,∠ACD=60°,再利用菱形的性質(zhì)可得AC=AD=DC=CF=AF,然后證明BD=CD即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一次函數(shù)y=mx+n的圖象與反比例函數(shù)y= 的圖象交于A(﹣4,2)、B(1,a)兩點,且與x軸交于點C.
(1)試確定上述兩個函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出一次函數(shù)的值小于反比例函數(shù)的值時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線y=mx2﹣6mx+5m與x軸交于A、B兩點,與y軸交于點C, = .
(1)求m的值;
(2)如圖2,連接BC,點P為點B右側(cè)的拋物線上一點,連接PA并延長交y軸于點D,過點P作PF⊥x軸于F,交線段CB的延長線于點E,連接DE,求證:DE∥AB;
(3)在(2)的條件下,點G在線段PE上,連接DG,若EG=2PG,∠DPE=2∠GDE時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.
(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,已知點A(0,3),點B(,0),連接AB.若對于平面內(nèi)一點C,當(dāng)△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.
(1)在點C1(-2,),點C2(0,-2),點C3(,)中,線段AB的“等長點”是點 ;
(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求m和n的值;
(3)若直線上至少存在一個線段AB的“等長點”,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)莊計劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù).小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)如圖①所示,小李種植水果所得報酬z(元)與種植面積n(畝)之間函數(shù)關(guān)系如圖②所示.
(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是 元,小張應(yīng)得的工資總額是 元,此時,小李種植水果 畝,小李應(yīng)得的報酬是 元;
(2)當(dāng)10<n≤30時,求z與n之間的函數(shù)關(guān)系式;
(3)設(shè)農(nóng)莊支付給小張和小李的總費用為w(元),當(dāng)10<m≤30時,求w與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一元二次方程x(x+5)=5x-10化成一般式的形式是( 。
A. x2+10=0 B. x2-10=0 C. x2=-10 D. x2+50x+10=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com