【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E、F分別在OD、OC上,且DE=CF,連接DF、AE,AE的延長(zhǎng)線交DF于點(diǎn)M

1)求證:AE=DF;

2)求證:AMDF

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析

【解析】

1)根據(jù)正方形的性質(zhì)證明△AOE≌△DOF即可;

2)由(1)知∠OEA=OFD,根據(jù)∠OAE+AEO=90°,等量代換即可得證.

證明:(1)∵四邊形ABCD是正方形,

OA=CO=OD,ACBD,

∴∠AOE=DOF=90°,

又∵DE=CF,

ODDE=OCCF,即OE=OF

在△AOE和△DOF中,,

∴△AOE≌△DOF(SAS),

AE=DF;

2)由(1)得:△AOE≌△DOF,

∴∠OEA=OFD,

∵∠OAE+AEO=90°

∴∠OAE+OFD=90°,

∴∠AMF=90°,

AMDF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)軸非負(fù)半軸上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,是線段的中點(diǎn),將點(diǎn)繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為,過(guò)點(diǎn)軸的垂線與直線相交于點(diǎn),連接,,設(shè)點(diǎn)的橫坐標(biāo)為

1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2)設(shè)的面積為,當(dāng)點(diǎn)在線段上時(shí),求之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

3)當(dāng)為何值時(shí),取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1a),B兩點(diǎn),與x軸交于點(diǎn)C

(1)a,k的值及點(diǎn)B的坐標(biāo);

(2)若點(diǎn)Px軸上,且SACPSBOC,直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長(zhǎng)400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后壩底增加的寬度AF的長(zhǎng);

(2)求完成這項(xiàng)工程需要土石多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,2),B(3,4),C(1,6)

1)畫(huà)出△ABC,并求出BC所在直線的解析式;

2)畫(huà)出△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市將舉辦時(shí)代新人說(shuō)第三季,幸福園小區(qū)居委會(huì)為了解居民獲取時(shí)代新人說(shuō)活動(dòng)相關(guān)信息的方式進(jìn)行了隨機(jī)抽樣調(diào)查,調(diào)查設(shè)置了A(網(wǎng)絡(luò)),B(電視),C(報(bào)紙),D(其他)四種方式,被調(diào)查的居民只能從中選取一種方式,并根據(jù)收集到的數(shù)據(jù)繪制了如下的兩幅均不完整的統(tǒng)計(jì)圖:

根據(jù)圖中信息,解答下列問(wèn)題.

補(bǔ)全上面的條形統(tǒng)計(jì)圖.

在扇形統(tǒng)計(jì)圖中,選擇種方式的人數(shù)所占的百分比是 ,選擇種方式的人數(shù)所在扇形圓心角的度數(shù)是

該小區(qū)有女報(bào)名了社區(qū)的時(shí)代新人說(shuō)活動(dòng),由于人數(shù)限制,居委會(huì)只能從中隨機(jī)抽取名參加活動(dòng),請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法求出恰好抽到女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB90°,∠B30°,以點(diǎn)O為圓心,OA為半徑作弧交AB于點(diǎn)A、點(diǎn)C,交OB于點(diǎn)D,若OA3,則陰影都分的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB10cm,E為對(duì)角線BD上一動(dòng)點(diǎn),連接AE,CE,過(guò)E點(diǎn)作EFAE,交直線BC于點(diǎn)FE點(diǎn)從B點(diǎn)出發(fā),沿著BD方向以每秒2cm的速度運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)D重合時(shí),運(yùn)動(dòng)停止.設(shè)△BEF的面積為ycm2,E點(diǎn)的運(yùn)動(dòng)時(shí)間為x秒.

1)求證:CEEF;

2)求yx之間關(guān)系的函數(shù)表達(dá)式,并寫(xiě)出自變量x的取值范圍;

3)求△BEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人同時(shí)登山,甲乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)甲登山的速度是   米/分鐘,乙在A地提速時(shí)距地面的高度b為   米.

(2)若乙提速后,乙的速度是甲登山速度的3倍,請(qǐng)求出乙提速后y和x之間的函數(shù)關(guān)系式.

(3)登山多長(zhǎng)時(shí)間時(shí),乙追上了甲,此時(shí)乙距A地的高度為多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案