【題目】寫出所有滿足下列條件的數(shù):
(1)大于-且小于的所有整數(shù);
(2)小于的所有正整數(shù);
(3)絕對值小于的所有整數(shù).
【答案】(1) -3,-2,-1,0,1,2,3.(2) 1,2,3,4,5.(3) -4,-3,-2,-1,0,1,2,3,4.
【解析】
(1)先估算-,的值,由于3<<4,所以-4<-<-3;同理3<<4.得出大于-且小于的所有整數(shù).
(2)估算的值,由于5<<6,得出小于的所有正整數(shù).
(3)先估算-的值,由于4<<5,所以-5<-<-4,得出絕對值小于的所有整數(shù).
(1) ∵<<,∴-<-<-,
∵,
∴-4<-<-3,3<<4,
∴滿足此條件的所有整數(shù)有:-3,-2,-1,0,1,2,3.
(2)∵,即5<<6.
∴小于的所有正整數(shù)有:1,2,3,4,5.
(3)∵絕對值小于的整數(shù)a滿足-<a<,而-<-<-,∴-5<a<5,
∴絕對值小于的所有整數(shù)有:-4,-3,-2,-1,0,1,2,3,4.
科目:初中數(shù)學 來源: 題型:
【題目】我國南水北調(diào)中線工程的起點是丹江水庫,按照工程計劃,需對原水庫大壩進行混凝土加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位.如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡坡底端水平方向增加的寬度AC(結果精確到0.1米.參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.50, ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC的周長是20,三邊分別為a,b,c.
(1)若b是最大邊,求b的取值范圍;
(2)若△ABC是三邊均不相等的三角形,b是最大邊,c是最小邊,且b=3c,a,b,c均為整數(shù),求△ABC的三邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,I點為△ABC的內(nèi)心,D點在BC上,且ID⊥BC,若∠B=44°,∠C=56°,則∠AID的度數(shù)為何?( 。
A. 174 B. 176 C. 178 D. 180
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,點D在底邊BC上,添加下列條件后,仍無法判定△ABD≌△ACD的是( )
A. BD=CD B. ∠BAD=∠CAD C. ∠B=∠C D. ∠ADB=∠ADC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是x軸上的一個動點,點C在y軸上,以AC為對角線畫正方形ABCD,已知點C的坐標是,設點A的坐標為.
當時,正方形ABCD的邊長______.
連結OD,當時,______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小明想探究函數(shù)的性質(zhì),他借助計算器求出了y與x的幾組對應值,并在平面直角坐標系中畫出了函數(shù)圖象:
x | … | -3 | -2 | -1 | 1 | 2 | 3 | … |
y | … | 2.83 | 1.73 | 0 | 0 | 1.73 | 2.83 | … |
小聰看了一眼就說:“你畫的圖象肯定是錯誤的.”
請回答:小聰判斷的理由是_____________.請寫出函數(shù)的一條性質(zhì):_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com