【題目】已知關于的一元二次方程.
若該方程有實數(shù)根,求的取值范圍.
若該方程一個根為,求方程的另一個根.
【答案】(1)的取值范圍為且;(2)方程的另一個根為.
【解析】
(1)根據(jù)一元二次方程的定義結(jié)合根的判別式即可得出關于a的一元一次不等式組,解之即可得出結(jié)論;
(2)將x=﹣1代入原方程求出a的值,設方程的另一個根為m,將a代入原方程結(jié)合根與系數(shù)的關系即可得出關于m的一元一次方程,解之即可得出結(jié)論.
(1)∵關于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有實數(shù)根,∴,解得:a≥1且a≠5,∴a的取值范圍為a≥1且a≠5.
(2)∵方程一個根為﹣1,∴(a﹣5)×(﹣1)2﹣4×(﹣1)﹣1=0,解得:a=2.
當a=2時,原方程為3x2+4x+1=0,設方程的另一個根為m,由根與系數(shù)的關系得:﹣m=,解得:m=﹣,∴方程的另一個根為﹣.
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;
(2)寫出點B的坐標;
(3)將△ABC向右平移5個單位長度,向下平移2個單位長度,畫出平移后的圖形△A′B′C′;
(4)計算△A′B′C′的面積﹒
(5)在x軸上存在一點P,使PA+PC最小,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點,AC∥OP,M是直徑AB上的動點,A與直線CM上的點連線距離的最小值為d,B與直線CM上的點連線距離的最小值為f.
(1)求證:PC是⊙O的切線;
(2)設OP=AC,求∠CPO的正弦值;
(3)設AC=9,AB=15,求d+f的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,AD為BC邊上的高,點M、N分別在AD、AC上,且AM=CN,連BM、BN,當BM+BN最小時,∠MBN=_____度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,從在格點上的點A,B,C,D中任取三點,所構(gòu)成的三角形恰好是直角三角形的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④,其中正確結(jié)論的個數(shù)為( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家具商場計劃購進某種餐桌、餐椅進行銷售,有關信息如下表:
原進價(元/張) | 零售價(元/張) | 成套售價(元/套) | |
餐桌 | a | 270 | 500 |
餐椅 | b | 70 |
若購進3張餐桌18張餐椅需要1170元;若購進5張餐桌25張餐椅需要1750元.
(1)求表中a,b的值;
(2)若該商場購進餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將全部餐桌配套銷售(一張餐桌和四張餐椅配成一套),其余餐椅以零售方式銷售.設購進餐桌的數(shù)量為x(張),總利潤為W(元),求W關于x的函數(shù)關系式,并求出總利潤最大時的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:
時間(分鐘) | 里程數(shù)(公里) | 車費(元) | |
小明 | 8 | 8 | 12 |
小剛 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】你吃過拉面嗎?實際上在做拉面的過程中就滲透著數(shù)學知識:一定體積的面團做成拉面,面條的總長度是面條的粗細(橫截面積)的反比例函數(shù),其圖象如圖所示.
寫出與的函數(shù)關系式:________.
當面條粗時,面條總長度是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com