【題目】綜合與實(shí)踐:
問(wèn)題情境:在矩形ABCD中,點(diǎn)E為BC邊的中點(diǎn),將△ABE沿直線AE翻折,使點(diǎn)B與點(diǎn)F重合,直線AF交直線CD于點(diǎn)G.
特例探究 實(shí)驗(yàn)小組的同學(xué)發(fā)現(xiàn):
(1)如圖1,當(dāng)AB=BC時(shí),AG=BC+CG,請(qǐng)你證明該小組發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)AB=BC=4時(shí),求CG的長(zhǎng);
延伸拓展:(3)實(shí)知小組的同學(xué)在實(shí)驗(yàn)小組的啟發(fā)下,進(jìn)一步探究了當(dāng)AB∶BC=∶2時(shí),線段AG,BC,CG之間的數(shù)量關(guān)系,請(qǐng)你直接寫出實(shí)知小組的結(jié)論:___________.
【答案】(1)見解析;(2)1;(3)AG=BC+CG
【解析】
(1)如圖1中,連接EG.只要證明△EGF≌△EGC即可解決問(wèn)題;
(2)只要證明△ABE∽△ECG,即可推出,由此即可解決問(wèn)題;
(3)如圖2中,連接EG.由△AEB≌△AEF,△EGF≌△EGC,推出AB=AF,BE=EF=EC,FG=GC,由AB∶BC=BC=∶2,推出AB=BC,可得AG=AF+FG=AB+CG=BC+CG.
解:(1)證明:連接EG.
∵△AEF是由△AEB翻折得到,點(diǎn)E為BC邊的中點(diǎn),
∴EB=EF=EC,AB=AF,∠AFE=∠B=∠C=90°.
在Rt△EGF和Rt△EGC中,,
∴Rt△EGF≌Rt△EGC(HL).
∴FG=GC.
∵AB=AF=BC,
∴AG=AF+FG=BC+CG.
(2)∵△EGF≌△EGC,
∴∠GEF=∠GEC.
∵∠AEB=∠AEF,∠BEC=180°,
∴∠AEG=90°.
∴∠AEB+∠GEC=90°,∠AEB+∠BAE=90°.
∴∠GEC=∠BAE.
∵∠B=∠C,
∴△ABE∽△ECG.
∴
∵EC=2,
∴CG=1;
(3)如圖2中,連接EG.
∵△AEB≌△AEF,△EGF≌△EGC,
∴AB=AF,BE=EF=EC,FG=GC,
∵AB:BC=BC=∶2,
∴AB=BC,
∴AG=AF+FG=AB+CG=BC+CG.
即AG=BC+CG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(,)的頂點(diǎn)是,拋物線與軸交于點(diǎn),與直線交于點(diǎn).過(guò)點(diǎn)作軸于點(diǎn),平移拋物線使其經(jīng)過(guò)點(diǎn)、得到拋物線(),拋物線與軸的另一個(gè)交點(diǎn)為.
(1)若,,,求點(diǎn)的坐標(biāo)
(2)若,求的值.
(3)若四邊形為矩形,,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O,過(guò)點(diǎn)A作⊙O的切線交對(duì)角線DB的延長(zhǎng)線于點(diǎn)F,則下列結(jié)論不成立的是( 。
A. AE∥BD B. AB=BF C. AF∥CD D. DF=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D、E分別是BC和CB延長(zhǎng)線上的點(diǎn),且,連接AD、AE,BM、CN分別是△ABE和△ACD的高線,垂足分別為M、N, BG、CH分別是∠ABE和∠ACD的平分線,分別交AE、AD于點(diǎn)G、H.
證明:(1)△ABE∽△DCA;
(2)sin∠MBG=sin∠NCH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價(jià)為每天元時(shí),客房恰好全部住滿;如果每間客房每天的定價(jià)每增加元,就會(huì)減少間客房出租.設(shè)每間客房每天的定價(jià)增加元,賓館出租的客房為間.求:
關(guān)于的函數(shù)關(guān)系式;
如果某天賓館客房收入元,那么這天每間客房的價(jià)格是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=4cm,F是弦BC的中點(diǎn),∠ABC=60°.若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā)在AB上沿著A→B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0≤t<8),連接EF,當(dāng)△BEF是直角三角形時(shí),t(s)的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(10,8),沿直線OD折疊矩形,使點(diǎn)A正好落在BC上的E處,E點(diǎn)坐標(biāo)為(6,8),拋物線y=ax2+bx+c經(jīng)過(guò)O、A、E三點(diǎn).
(1)求此拋物線的解析式;
(2)求AD的長(zhǎng);
(3)點(diǎn)P是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)△PAD的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+3分別與x軸、y軸交于點(diǎn)A、C,直線y=mx+分別與x軸、y軸交于點(diǎn)B、D,直線AC與直線BD相交于點(diǎn)M(﹣1,b)
(1)不等式x+3≤mx+的解集為 .
(2)求直線AC、直線BD與x軸所圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④;⑤.其中正確的是________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com