【題目】綜合題
閱讀下列材料:
配方法是初中數(shù)學中經(jīng)常用到的一個重要方法,學好配方法對我們學習數(shù)學有很大的幫助,所謂配方就是將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程,則,∴
求、.則有,∴.解得,.則有,∴.解得或,根據(jù)以上材料解答下列各題:
若.求的值.
.求的值.
若.求的值.
若,,表示的三邊,且,試判斷的形狀,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,分別垂直平分和,交于兩點,與相交于點.
(1)若=21cm,則的周長= ;(第一問直接寫答案)
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)的某種時令商品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時間t(天)的關(guān)系滿足:m=﹣2t+96.且未來40天內(nèi),前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關(guān)系式為y1=t+25(1≤t≤20且t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關(guān)系式為y2=﹣t+40(21≤t<40且t為整數(shù)).下面我們就來研究銷售這種商品的有關(guān)問題
(1)請分別寫出未來40天內(nèi),前20天和后20天的日銷售利潤w(元)與時間t的函數(shù)關(guān)系式;
(2)請預測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列說法,其中正確的是( )
①關(guān)于的一元二次方程,若,則方程一定沒有實數(shù)根;
②關(guān)于的一元二次方程,若,則方程必有實數(shù)根;
③若是方程的根,則;
④若,,為三角形三邊,方程有兩個相等實數(shù)根,則該三角形為直角三角形.
A. ①② B. ①④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為米的籬笆圍成.已知墻長為米(如圖),設(shè)這個苗圃園垂直于墻的一邊長為米.
若苗圃園的面積為平方米,求;
若平行于墻的一邊長不小于米,這個苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,點從開始沿折線以的速度運動,點從開始沿邊以的速度移動,如果點、分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設(shè)運動時間為,當________時,四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個動點(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的處,稱為第次操作,折痕到的距離記為,還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第次操作,折痕到的距離記為;按上述方法不斷操作下去…,經(jīng)過第次操作后得到的折痕,到的距離記為;若,則的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com