【題目】如圖,P點是某海域內的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)
(1)試問船B在燈塔P的什么方向?
(2)求兩船相距多少海里?(結果保留根號)
【答案】(1)船B在燈塔P的南偏東30°的方向上;(2)兩船相距(40﹣10)海里.
【解析】
(1)過過P作PC⊥AB交AB于C,在Rt△APC中,利用余弦的定義求出PC=30海里,在Rt△PBC中,利用余弦定義可求出cos∠BPC=,從而求出∠BPC=30°;
(2) 在Rt△APC中,利用正弦函數(shù)求出AC=40海里,在Rt△PBC中,根據(jù)30°角所對的直角邊等于斜邊的一半可求出BC=10,進而可求出AB的值
(1)過P作PC⊥AB交AB于C,
在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,
∴PC=APcos53°=50×0.60=30海里,
在Rt△PBC中,∵PB=20,PC=30,
∴cos∠BPC== ,
∴∠BPC=30°,
∴船B在燈塔P的南偏東30°的方向上;
(2)∵AC=APsin53°=50×0.8=40海里,
BC=PB=10,
∴AB=AC﹣BC=(40﹣10)海里,
答:兩船相距(40﹣10)海里.
科目:初中數(shù)學 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補充完整:(參考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 7 |
| 7 |
乙 |
| 5.4 |
|
(2)請從下列三個不同的角度對這次測試結果進行
①從平均數(shù)和方差相結合看, 的成績好些;
②從平均數(shù)和中位數(shù)相結合看, 的成績好些;
③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角△ABC中,∠BAC=90°,D在BC上,連接AD,作BF⊥AD分別交AD于E,AC于F.
(1)如圖1,若BD=BA,求證:△ABE≌△DBE;
(2)如圖2,若BD=4DC,取AB的中點G,連接CG交AD于M,求證:①GM=2MC;②AG2=AFAC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點B、C、D始終在一條直線上,已知托臂AC=20厘米,托臂BD=40厘米,支點C,D之間的距離是10厘米,張角∠CAB=60°.
(1)求支點D到滑軌MN的距離(精確到1厘米);
(2)將滑塊A向左側移動到A′,(在移動過程中,托臂長度不變,即AC=A′C′,BC=BC′)當張角∠C′A'B=45°時,求滑塊A向左側移動的距離(精確到1厘米).(備用數(shù)據(jù):≈1.41,≈1.73,≈2.45,≈2.65)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某興趣小組用無人機進行航拍測高,無人機從1號樓和2號樓的地面正中間B點垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____米(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y=ax2+bx+c(a>0)與x軸交于A(﹣1,0)、B兩點(點A在點B的左側),與y軸交于點C,拋物線的頂點為點D,對稱軸為直線x=1,交x軸于點E,tan∠BDE=.
(1)求拋物線的表達式;
(2)若點P是對稱軸上一點,且∠DCP=∠BDE,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,
(1)要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由.
(2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為s2(如圖2),則s2=;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形面積和為s3,繼續(xù)操作下去…,則第10次剪取時,s10=;
(3)求第10次剪取后,余下的所有小三角形的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,給定銳角三角形ABC,小明希望畫正方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上,他發(fā)現(xiàn)直接畫圖比較困難,于是他先畫了一個正方形HIJK,使得點H,I位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時他發(fā)現(xiàn)可以將正方形HIJK通過放大或縮小得到滿足要求的正方形DEFG.
閱讀以上材料,回答小明接下來研究的以下問題:
(1)如圖2,給定銳角三角形ABC,畫出所有長寬比為2:1的長方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上.
(2)已知三角形ABC的面積為36,BC=12,在第(1)問的條件下,求長方形DEFG的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD中,BC=3,點E、F分別是CB、CD延長線上的點,DF=BE,連接AE、AF,過點A作AH⊥ED于H點.
(1)求證:△ADF≌△ABE;
(2)若BE=1,求tan∠AED的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com