【題目】在如圖所示的單位正方形網(wǎng)格中,△ABC(點(diǎn)B與原點(diǎn)O重合)經(jīng)過平移后得到△A1B1C1,已知在AC上一點(diǎn)P2.42)平移后的對(duì)應(yīng)點(diǎn)為P1,點(diǎn)P1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°,得到對(duì)應(yīng)點(diǎn)P2,則P2點(diǎn)的坐標(biāo)為(

A.1.41B.1.5,2C.1.61D.2.4,1

【答案】C

【解析】

根據(jù)平移的性質(zhì)得出,△ABC的平移方向以及平移距離,即可得出P1坐標(biāo),進(jìn)而利用中心對(duì)稱圖形的性質(zhì)得出P2點(diǎn)的坐標(biāo).

解:∵A點(diǎn)坐標(biāo)為:(2,4),A1(﹣2,1),

∴點(diǎn)P2.4,2)平移后的對(duì)應(yīng)點(diǎn)P1為:(﹣1.6,﹣1),

∵點(diǎn)P1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°,得到對(duì)應(yīng)點(diǎn)P2,

P2點(diǎn)的坐標(biāo)為:(1.6,1).

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在疫情期間,某地推出線上名師公益大課堂,為廣大師生、其他社會(huì)人士提供線上專業(yè)知識(shí)學(xué)習(xí)、心理健康疏導(dǎo).參與學(xué)習(xí)第一批公益課的人數(shù)達(dá)到2萬人,因該公益課社會(huì)反響良好,參與學(xué)習(xí)第三批公益課的人數(shù)達(dá)到242萬人.參與學(xué)習(xí)第二批、第三批公益課的人數(shù)的增長(zhǎng)率相同.

1)求這個(gè)增長(zhǎng)率;

2)據(jù)大數(shù)據(jù)統(tǒng)計(jì),參與學(xué)習(xí)第三批公益課的人數(shù)中,師生人數(shù)在參與學(xué)習(xí)第二批公益課的師生人數(shù)的基礎(chǔ)上增加了80%;但因?yàn)橐呀?jīng)部分復(fù)工,其他社會(huì)人士的人數(shù)在參與學(xué)習(xí)第二批公益課的其他社會(huì)人士人數(shù)的基礎(chǔ)上減少了60%.求參與學(xué)習(xí)第三批公益課的師生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD=4,∠C=30°,⊙OAD相交于點(diǎn)F,AB為⊙O的直徑,⊙OCD的延長(zhǎng)線相切于點(diǎn)E,則劣弧FE的長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師將“校園詩(shī)詞大賽”所有參賽選手的比賽成績(jī)(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖,部分信息如下:

1)本次比賽選手共有_ 人,扇形統(tǒng)計(jì)圖中“”這一組人數(shù)占總參賽人數(shù)的百分比為_ ,頻數(shù)直方圖中“”這一組的人數(shù)為__ ;

2)賽前規(guī)定,成績(jī)由高到低前的參賽選手獲獎(jiǎng)某參賽選手的比賽成績(jī)?yōu)?/span>分,試判斷他能否獲獎(jiǎng),并說明理由;

3)成績(jī)前四名是名男生和名女生,若從他們中任選人作為全區(qū)“詩(shī)詞大會(huì)”重點(diǎn)培訓(xùn)對(duì)象,試求恰好選中女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加10件.

(1)求商場(chǎng)經(jīng)營(yíng)該商品原來一天可獲利潤(rùn)多少元?

(2)設(shè)后來該商品每件降價(jià)x元,,商場(chǎng)一天可獲利潤(rùn)y元.

①若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)多少元?

②求出yx之間的函數(shù)關(guān)系式,結(jié)合題意寫出當(dāng)x取何值時(shí),商場(chǎng)獲利潤(rùn)不少于2160元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)B作BMx軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)院醫(yī)生為了研究該院某種疾病的診斷情況,需要調(diào)查來院就診的病人的兩個(gè)生理指標(biāo),,于是他分別在這種疾病的患者和非患者中,各隨機(jī)選取20人作為調(diào)查對(duì)象,將收集到的數(shù)據(jù)整理后,繪制統(tǒng)計(jì)圖如下:

“●”表示患者,“▲”表示非患者.

根據(jù)以上信息,回答下列問題:

1)在這40名被調(diào)查者中,

指標(biāo)低于04的有  人;

20名患者的指標(biāo)的平均數(shù)記作,方差記作20名非患者的指標(biāo)的平均數(shù)記作,方差記作,則 , (“>”,“=”“<”);

2)來該院就診的500名未患這種疾病的人中,估計(jì)指標(biāo)低于03的大約有 人;

3)若將指標(biāo)低于03,且指標(biāo)低于08”作為判斷是否患有這種疾病的依據(jù),則發(fā)生漏判的概率多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,ECD邊上一點(diǎn)(CE>DE),AE,BD交于點(diǎn)F

1)如圖1,過點(diǎn)FGHAE,分別交邊AD,BC于點(diǎn)GH

求證:∠EAB=GHC;

2AE的垂直平分線分別與AD,AEBD交于點(diǎn)P,M,N,連接CN

①依題意補(bǔ)全圖形;

1 備用圖

②用等式表示線段AECN之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O.E,F(xiàn)AC上的兩點(diǎn),并且AE=CF,連接DE,BF.

(1)求證:DOE≌△BOF;

(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案