【題目】某校七年級為了表彰“數(shù)學素養(yǎng)水平測試”中表現(xiàn)優(yōu)秀的同學,準備用480元錢購進筆記本作為獎品.種筆記本買20本,本筆記本買30本,則錢還缺40元;若種筆記本買30本,種筆記本買20本,則錢恰好用完.

1)求兩種筆記本的單價.

2)由于實際需要,需要增加購買單價為6元的種筆記本若干本.若購買,三種筆記本共60本,錢恰好全部用完.任意兩種筆記本之間的數(shù)量相差小于15本,則種筆記本購買了__________本.(直接寫出答案)

【答案】1、兩種筆記本的單價分別為8元,12元;(224,26,28.

【解析】

1)設、單價分別為,,根據(jù)題意列出方程組即可求解;

2)設種筆記本購買本,種筆記本購買本,得到方程組,根據(jù)任意兩種筆記本之間的數(shù)量相差小于15本,得到b的取值,故可求解.

解:(1)設單價分別為,;

,解得.

2)設種筆記本購買本,種筆記本購買本,

,解得,故

∵任意兩種筆記本之間的數(shù)量相差小于15本,

,把、=2b,代入求得不等式組的解集為

可知:

b可以為12,13,14

對應的c24,26,28.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一節(jié)數(shù)學課上,老師出示了這樣一個問題讓學生探究:

已知:如圖在△ABC中,點D 是BA邊延長線上一動點,點F 在BC上,且,連接DF交AC于點E .

(1)如圖1,當點E恰為DF的中點時,請求出的值;

2如圖2,當時,請求出的值(用含a的代數(shù)式表示).

思考片刻后,同學們紛紛表達自己的想法:

甲:過點F作FG∥AB交AC于點G,構造相似三角形解決問題;

乙:過點F作FG∥AC交AB于點G,構造相似三角形解決問題;

丙:過點D作DG∥BC交CA延長線于點G,構造相似三角形解決問題;

老師說:“這三位同學的想法都可以” .

請參考上面某一種想法,完成第(1)問的求解過程,并直接寫出第(2)問的值.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一枚質地均勻的正二十面體形狀的骰子,其中的1個面標有“1”,2個面標有“2”, 3個面標有“3”,4個面標有“4”,5個面標有“5”,其余的面標有“6”.將這枚骰子擲出后:

(1)數(shù)字幾朝上的概率最?

(2)奇數(shù)面朝上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線mAB,DAB邊上一點,過點DDEBC,交直線m于點E,垂足為點F,連接CD,BE

1)求證:CE=AD

2)當點DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

3)當∠A的大小滿足什么條件時,四邊形BECD是正方形?(不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點Aa0)和B0,b)滿足(a42+b6|=0,分別過點A,Bx軸.y軸的垂線交于點C,如圖所示.點P從原點出發(fā),以每秒1個單位長度的速度沿著OBCA的路線移動,運動時間為t秒.

1)寫出A,B,C三點的坐標:A   ,B   ,C   ;

2)當t14秒時,求△OAP的面積.

3)點P在運動過程中,當△OAP的面積為6時,求t的值及點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長為1cm,平移圖中的ABC,使點B移到點B1的位置.

1)利用方格和直尺畫圖

①畫出平移后的A1B1C1

②畫出AB邊上的中線CD;

③畫出BC邊上的高AH;

2)線段A1C1與線段AC的位置關系與數(shù)量關系為   

3A1B1C1的面積為   cm2;BCD的面積為   cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(一)知識鏈接

若點MN在數(shù)軸上,且MN代表的實數(shù)分別是a,b,則線段MN的長度可表示為 .

(二)解決問題

如圖,將一個三角板放置在平面直角坐標系中,∠ACB=90°,AC=BC,點B,C的坐標分別為(-2,-4),(-40.

1)求點A的坐標及直線AB的表達式;

2)若Px軸上一點,且SABP=6,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線,,分別相交于點,,且交直線于點.

1)若,求的度數(shù);

2)若,,,求直線的距離.

查看答案和解析>>

同步練習冊答案