【題目】已知數(shù)軸上有A、B、C三個(gè)點(diǎn)分別表示有理數(shù)24,-10,10,動(dòng)點(diǎn)PA出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

1用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離PA= PC=

2當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)QA點(diǎn)出發(fā)以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動(dòng),Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回運(yùn)動(dòng)到終點(diǎn)A

①在運(yùn)動(dòng)過(guò)程中,t為何值時(shí)PQ重合?

②在點(diǎn)Q開(kāi)始運(yùn)動(dòng)后,P、Q兩點(diǎn)之間的距離能否為2個(gè)單位?如果能,請(qǐng)求出此時(shí)點(diǎn)P表示的數(shù)如果不能,請(qǐng)說(shuō)明理由

【答案】1t,34t;(221;t20、22、2728時(shí),PQ=2..點(diǎn)P表示的數(shù)分別為:4,2,34

【解析】試題分析:(1)數(shù)軸上求距離,利用大的(右邊)坐標(biāo)減去小的(左邊)坐標(biāo),或者任意兩個(gè)坐標(biāo)作差再求絕對(duì)值. (2)根據(jù)題意求解絕對(duì)值方程.

試題解析:

解:1PA=t,PC=34-t,(221

PAB需要時(shí)間:14秒,QA=3t14),當(dāng)QAC過(guò)程:PQ=|t3t14|=|422t|=2422t=2得,t=20,422t=2得,t=22,當(dāng)QC往回,Q到達(dá)C需要時(shí)間: , CQ=3t14=3t76PQ=|34t3t76|=|1104t|=2,1104t=±2,t=27t=28.

答:t20、22、27、28時(shí),PQ=2.

點(diǎn)P表示的數(shù)分別為:4;2;3;4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC為矩形ABCD的對(duì)角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處,若AB=6cm,AC=10cm,則四邊形AECF的面積為cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中點(diǎn)P(一1,m4+1)一定在(   。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC,若三角形ABC的邊長(zhǎng)為1,AE=2,則CD的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù)中,比﹣3小的數(shù)是(  )

A. 2B. 0C. 1D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(1,2),則它的圖象也一定經(jīng)過(guò)( 。

A.1,﹣2B.(﹣1,2C.(﹣2,1D.(﹣1,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖(1),若分別以△ABC的三邊AC,BC,AB為邊向三角形外側(cè)作正方形ACDE,BCFG和ABMN,則稱這三個(gè)正方形為△ABC的外展三葉正方形,其中任意兩個(gè)正方形為△ABC的外展雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2 . ①如圖(2),當(dāng)∠ACB=90°時(shí),求證:S1=S2
②如圖(3),當(dāng)∠ACB≠90°時(shí),S1與S2是否仍然相等,請(qǐng)說(shuō)明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF,△AEN,△BGM的面積和為S,請(qǐng)利用圖(1)探究:當(dāng)∠ACB的度數(shù)發(fā)生變化時(shí),S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠A90°,AB4AC3,MAB上的動(dòng)點(diǎn)(不與A,B重合),過(guò)M點(diǎn)作MNBCAC于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令AMx

1)用含x的代數(shù)式表示NP的面積S;

2)當(dāng)x為何值時(shí),⊙O與直線BC相切?

3)在動(dòng)點(diǎn)M的運(yùn)動(dòng)過(guò)程中,記NP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達(dá)式,并求x為何值時(shí),y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市去年約有50 000人參加中考,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法可表示為人.

查看答案和解析>>

同步練習(xí)冊(cè)答案